cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A333901 Array read by antidiagonals: T(n,k) is the number of n X k nonnegative integer matrices with all column sums n and row sums k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 7, 7, 1, 1, 1, 1, 19, 55, 19, 1, 1, 1, 1, 51, 415, 415, 51, 1, 1, 1, 1, 141, 3391, 10147, 3391, 141, 1, 1, 1, 1, 393, 28681, 261331, 261331, 28681, 393, 1, 1, 1, 1, 1107, 248137, 7100821, 22069251, 7100821, 248137, 1107, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Apr 18 2020

Keywords

Comments

T(n,k) is the number of ordered factorizations of m^n into n factors, where m is a product of exactly k distinct primes and each factor is a product of k primes (counted with multiplicity).

Examples

			Array begins:
=======================================================
n\k | 0 1   2     3       4          5            6
----+--------------------------------------------------
  0 | 1 1   1     1       1          1            1 ...
  1 | 1 1   1     1       1          1            1 ...
  2 | 1 1   3     7      19         51          141 ...
  3 | 1 1   7    55     415       3391        28681 ...
  4 | 1 1  19   415   10147     261331      7100821 ...
  5 | 1 1  51  3391  261331   22069251   1985311701 ...
  6 | 1 1 141 28681 7100821 1985311701 602351808741 ...
  ...
The T(3,2) = 7 matrices are:
  [1 1]  [1 1]  [1 1]  [2 0]  [2 0]  [0 2]  [0 2]
  [1 1]  [2 0]  [0 2]  [1 1]  [0 2]  [1 1]  [2 0]
  [1 1]  [0 2]  [2 0]  [0 2]  [1 1]  [2 0]  [1 1]
		

Crossrefs

Main diagonal is A110058.

Programs

  • PARI
    T(n, k)={
      local(M=Map(Mat([k, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(h, p, q, v, e) = if(!p, if(!e, acc(q, v)), my(i=poldegree(p), t=pollead(p)); self()(n, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(j=1, min(t, e\m), self()(if(j==t, n, i+m-1), p-j*x^i, q+j*x^(i+m), binomial(t, j)*v, e-j*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], recurse(n, src[i, 1], 0, src[i, 2], k))); vecsum(Mat(M)[, 2])
    }
    for(n=0, 7, for(k=0, 7, print1(T(n,k), ", ")); print)

Formula

T(n,k) = T(k,n).

A257463 Number A(n,k) of factorizations of m^k into n factors, where m is a product of exactly n distinct primes and each factor is a product of k primes (counted with multiplicity); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 10, 17, 1, 1, 1, 1, 3, 23, 93, 73, 1, 1, 1, 1, 4, 40, 465, 1417, 388, 1, 1, 1, 1, 4, 73, 1746, 19834, 32152, 2461, 1, 1, 1, 1, 5, 114, 5741, 190131, 1532489, 1016489, 18155, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Comments

Also number of ways to partition the multiset consisting of k copies each of 1, 2, ..., n into n multisets of size k.

Examples

			A(4,2) = 17: (2*3*5*7)^2 = 44100 = 15*15*14*14 = 21*15*14*10 = 21*21*10*10 = 25*14*14*9 = 25*21*14*6 = 25*21*21*4 = 35*14*10*9 = 35*15*14*6 = 35*21*10*6 = 35*21*15*4 = 35*35*6*6 = 35*35*9*4 = 49*10*10*9 = 49*15*10*6 = 49*15*15*4 = 49*25*6*6 = 49*25*9*4.
A(3,3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
A(2,4) = 3: (2*3)^4 = 1296 = 36*36 = 54*24 = 81*16.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   1,     1,       1,        1,         1, ...
  1, 1,   2,     2,       3,        3,         4, ...
  1, 1,   5,    10,      23,       40,        73, ...
  1, 1,  17,    93,     465,     1746,      5741, ...
  1, 1,  73,  1417,   19834,   190131,   1398547, ...
  1, 1, 388, 32152, 1532489, 43816115, 848597563, ...
		

Crossrefs

Columns k=0+1, 2-4 give: A000012, A002135, A254243, A268668.
Rows n=0+1, 2-5 give: A000012, A008619, A257464, A253259, A253263.
Main diagonal gives A334286.
Cf. A257462, A257493 (ordered factorizations).

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, k) option remember; `if`(n=1, 1,
          add(`if`(d>i or bigomega(d)<>k, 0,
          b(n/d, d, k)), d=divisors(n)))
        end:
    A:= (n, k)-> b(mul(ithprime(i), i=1..n)^k$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==1, 1, DivisorSum[n, If[#>i || PrimeOmega[#] != k, 0, b[n/#, #, k]]&]];
    A[n_, k_] := b[p = Product[Prime[i], {i, 1, n}]^k, p, k];
    Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 20 2017, translated from Maple *)

A320451 Number of multiset partitions of uniform integer partitions of n in which all parts have the same length.

Original entry on oeis.org

1, 1, 3, 5, 8, 7, 19, 11, 24, 26, 38, 28, 85, 46, 89, 99, 146, 110, 246, 163, 326, 305, 416, 376, 816, 591, 903, 971, 1450, 1295, 2517, 1916, 3045, 3141, 4042, 4117, 7073, 5736, 8131, 9026, 12658, 11514, 19459, 16230, 24638, 27129, 33747, 32279, 55778, 45761, 71946
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2018

Keywords

Comments

An integer partitions is uniform if all parts appear with the same multiplicity.
Terms can be computed by the formula: Sum_{d|n} Sum_{i>=1} P(n/d,i) * Sum_{h|i*d} M(i*d/h, i, h, d) where P(n,k) is the number of partitions of n into k distinct parts and M(h,w,r,s) is the number of nonnegative integer h X w matrices up to row permutations with all row sums equal to r and all column sums equal to s. The cases of M(h,w,w,h) and M(n,n,k,k) are enumerated by the arrays A257462 and A257463. - Andrew Howroyd, Feb 04 2022

Examples

			The a(9) = 26 multiset partitions:
  {{9}}
  {{1,8}}
  {{2,7}}
  {{3,6}}
  {{4,5}}
  {{1,2,6}}
  {{1,3,5}}
  {{1},{8}}
  {{2,3,4}}
  {{2},{7}}
  {{3,3,3}}
  {{3},{6}}
  {{4},{5}}
  {{1},{2},{6}}
  {{1},{3},{5}}
  {{2},{3},{4}}
  {{3},{3},{3}}
  {{1,1,1,2,2,2}}
  {{1,1,1},{2,2,2}}
  {{1,1,2},{1,2,2}}
  {{1,1},{1,2},{2,2}}
  {{1,2},{1,2},{1,2}}
  {{1,1,1,1,1,1,1,1,1}}
  {{1,1,1},{1,1,1},{1,1,1}}
  {{1},{1},{1},{2},{2},{2}}
  {{1},{1},{1},{1},{1},{1},{1},{1},{1}}
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@IntegerPartitions[n],And[SameQ@@Length/@Split[Sort[Join@@#]],SameQ@@Length/@#]&]],{n,10}]

Extensions

Terms a(11) and beyond from Andrew Howroyd, Feb 04 2022

A257520 Number of factorizations of m^2 into 2 factors, where m is a product of exactly n distinct primes and each factor is a product of n primes (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 71, 197, 554, 1570, 4477, 12827, 36895, 106471, 308114, 893804, 2598314, 7567466, 22076405, 64498427, 188689685, 552675365, 1620567764, 4756614062, 13974168191, 41088418151, 120906613076, 356035078102, 1049120176954, 3093337815410
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2015

Keywords

Comments

Also number of ways to partition the multiset consisting of 2 copies each of 1, 2, ..., n into 2 multisets of size n.

Examples

			a(4) = 10: (2*3*5*7)^2 = 44100 = 210*210 = 225*196 = 294*150 = 315*140 = 350*126 = 441*100 = 490*90 = 525*84 = 735*60 = 1225*36.
		

Crossrefs

Row n=2 of A257462.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 2][n+1],
          ((3*n^2-7*n+3)*a(n-1) +(n-1)*(n-3)*a(n-2)
           -3*(n-1)*(n-2)*a(n-3)) / (n*(n-2)))
        end:
    seq(a(n), n=0..40);

Formula

G.f.: (1/sqrt((1+x)*(1-3*x))+1/(1-x))/2.
E.g.f.: exp(x)*(1+BesselI(0,2*x))/2.
a(n) = ((3*n^2-7*n+3)*a(n-1) +(n-1)*(n-3)*a(n-2) -3*(n-1)*(n-2)*a(n-3)) / (n*(n-2)) for n>2, a(0) = a(1) = 1, a(2) = 2.
a(n) = (A002426(n)+1)/2.
a(n) = A097861(n)+1.

A254233 Number of ways to partition the multiset consisting of n copies each of 1, 2, and 3 into n sets of size 3.

Original entry on oeis.org

1, 1, 4, 10, 25, 49, 103, 184, 331, 554, 911, 1424, 2204, 3278, 4817, 6896, 9746, 13487, 18480, 24882, 33192, 43683, 56994, 73512, 94131, 119340, 150300, 187732, 233065, 287248, 352153, 428944, 519949, 626737, 752095, 897994, 1067924, 1264241, 1491155, 1751672
Offset: 0

Views

Author

Tatsuru Murai, Jan 27 2015

Keywords

Examples

			For n = 2, the set {1,1,2,2,3,3} can be partitioned into two sets in four ways: {{112},{233}}, {{113},{223}}, {{122},{133}}, and {{123},{123}}.
		

Crossrefs

Column k=3 of A257462.

Formula

G.f.: (x^12-x^11+x^10+3*x^9+5*x^8+x^7+4*x^6+x^5+5*x^4+3*x^3+x^2-x+1) / ((x^2+1)*(x^2-x+1)*(x^2+x+1)^3*(x+1)^4*(x-1)^8). - Alois P. Heinz, Apr 21 2015

Extensions

Fixed definition and examples by Kellen Myers, Apr 21 2015
a(14)-a(39) from Alois P. Heinz, Apr 21 2015

A333902 Number of nonequivalent 3 X n nonnegative integer matrices with all column sums 3 and row sums n up to permutation of rows.

Original entry on oeis.org

1, 1, 2, 10, 70, 566, 4781, 41357, 364470, 3257830, 29450557, 268701797, 2470513849, 22862694505, 212758007450, 1989477010250, 18682005254390, 176085344355510, 1665167298000005, 15793406377949405, 150192477267201945, 1431741484334863145, 13678227386467491410
Offset: 0

Views

Author

Andrew Howroyd, Apr 18 2020

Keywords

Comments

Number of factorizations of m^3 into 3 factors, where m is a product of exactly n distinct primes and each factor is a product of n primes (counted with multiplicity).

Examples

			The a(2) = 2 matrices are:
  [1 1]  [0 2]
  [1 1]  [1 1]
  [1 1]  [2 0]
		

Crossrefs

Row n=3 of A257462.

A334286 Number of factorizations of m^n into n factors, where m is a product of exactly n distinct primes and each factor is a product of n primes (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 10, 465, 190131, 848597563, 43025433375905, 26004966055138634525, 194173310204064149748222455, 18434259996904142171888712495703426, 22778257480946919793779826285286813732062310, 373444566958856976964193391832469245535883039838631492
Offset: 0

Views

Author

Alois P. Heinz, Apr 21 2020

Keywords

Comments

Also number of ways to partition the multiset consisting of n copies each of 1, 2, ..., n into n multisets of size n.

Examples

			a(3) = 10: (2*3*5)^3 = 2700 = 30*30*30 = 45*30*20 = 50*27*20 = 50*30*18 = 50*45*12 = 75*20*18 = 75*30*12 = 75*45*8 = 125*18*12 = 125*27*8.
		

Crossrefs

Main diagonal of A257462 and of A257463.

Formula

a(n) = A257462(n,n) = A257463(n,n).

Extensions

More terms from Andrew Howroyd, Apr 21 2020

A257114 Number of factorizations of m^n into n factors, where m is a product of exactly 4 distinct primes and each factor is a product of 4 primes (counted with multiplicity).

Original entry on oeis.org

1, 1, 10, 70, 465, 2505, 12652, 57232, 240481, 936785, 3428138, 11817866, 38676949, 120577553, 359800464, 1030830032, 2845200663, 7584911479, 19580001382, 49046743566, 119457712491, 283383330899, 655832583316, 1482829086428, 3279794012205, 7105246435381
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2015

Keywords

Examples

			a(2) = 10: (2*3*5*7)^2 = 44100 = 210*210 = 225*196 = 294*150 = 315*140 = 350*126 = 441*100 = 490*90 = 525*84 = 735*60 = 1225*36.
		

Crossrefs

Column k=4 of A257462.

A257518 Number of factorizations of m^n into n factors, where m is a product of exactly 5 distinct primes and each factor is a product of 5 primes (counted with multiplicity).

Original entry on oeis.org

1, 1, 26, 566, 11131, 190131, 2928876, 40757006, 518890101, 6083666731, 66157864251, 671143606086, 6384844387411, 57220640955261, 485038299365181, 3902760531727911, 29904009021483406, 218823691308461156, 1533172142451741421, 10309493626479157551
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2015

Keywords

Examples

			a(2) = 26: (2*3*5*7*11)^2 = 5336100 = 2310*2310 = 2420*2205 = 2450*2178 = 2475*2156 = 3234*1650 = 3388*1575 = 3465*1540 = 3630*1470 = 3675*1452 = 3850*1386 = 4851*1100 = 5082*1050 = 5390*990 = 5445*980 = 5775*924 = 6050*882 = 7623*700 = 8085*660 = 8470*630 = 9075*588 = 11858*450 = 12705*420 = 13475*396 = 17787*300 = 21175*252 = 29645*180.
		

Crossrefs

Column k=5 of A257462.
Showing 1-9 of 9 results.