cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005815 Number of 4-valent labeled graphs with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462606, 5188453830, 480413921130, 52113376310985, 6551246596501035, 945313907253606891, 155243722248524067795, 28797220460586826422720
Offset: 0

Views

Author

Keywords

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 411.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005814, A002829, A005816, A272905 (connected). A diagonal of A059441.

Programs

  • Maple
    egf := (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16));
    ser := convert(series(egf,x=0,40),polynom):
    seq(coeff(ser,x,i)*i!, i=0..degree(ser)); # Mark van Hoeij, Nov 07 2011
  • Mathematica
    max = 17; f[x_] := HypergeometricPFQ[{1/4, 3/4}, {}, -12*x*(x + 2)*(x - 1)/(x^3 + 2*x^2 - 6*x - 6)^2]*Exp[-x*(x^2 - 6)/(8*x + 16)]/(1 + x - x^2/3 - x^3/6)^ (1/2); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Jun 19 2012, from e.g.f. *)

Formula

From Vladeta Jovovic, Mar 26 2001: (Start)
E.g.f. f(x) = Sum_{n >= 0} a(n)*x^n/(n)! satisfies the differential equation 16*x^2*(x - 1)^2*(x + 2)^2*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)*(d^2/dx^2)y(x) - 4*(x^13 + 4*x^12 - 16*x^10 - 10*x^9 - 36*x^8 - 220*x^7 - 348*x^6 - 48*x^5 + 200*x^4 - 336*x^3 - 240*x^2 + 416*x - 96)*(d/dx)y(x) - x^4*(x^5 + 2*x^4 + 2*x^2 + 8*x - 4)^2*y(x) = 0.
Recurrence: a(n) = - 1/384*(( - 256*n^2 - 896*n + 1152)*a(n - 1) + (768*n^3 - 3648*n^2 + 5568*n - 2688)*a(n - 2) + ( - 192*n^4 + 3264*n^3 - 14784*n^2 + 24384*n - 12672)*a(n - 3) + (224*n^6 - 4512*n^5 + 36304*n^4 - 148160*n^3 + 320016*n^2 - 341728*n + 137856)*a(n - 5) + ( - 640*n^5 + 8800*n^4 - 46400*n^3 + 116000*n^2 - 135360*n + 57600)*a(n - 4) + ( - 24*n^10 + 1320*n^9 - 31680*n^8 + 435600*n^7 - 3786552*n^6 + 21649320*n^5 - 82006320*n^4 + 201828000*n^3 - 306085824*n^2 + 255087360*n - 87091200)*a(n - 11) + (64*n^10 - 3480*n^9 + 82692*n^8 - 1127232*n^7 + 9726024*n^6 - 55255032*n^5 + 208179908*n^4 - 510068208*n^3 + 770738352*n^2 - 640484928*n + 218211840)*a(n - 9) + (16*n^11 - 992*n^10 + 27256*n^9 - 437160*n^8 + 4536288*n^7 - 31876656*n^6 + 154182488*n^5 - 510784360*n^4 + 1128552896*n^3 - 1570313952*n^2 + 1223830656*n - 397716480)*a(n - 10) + ( - 128*n^8 + 5488*n^7 - 94576*n^6 + 864976*n^5 - 4606672*n^4 + 14604352*n^3 - 26753984*n^2 + 25611264*n - 9630720)*a(n - 7) + (16*n^9 - 576*n^8 + 8704*n^7 - 71680*n^6 + 348880*n^5 - 1013824*n^4 + 1673376*n^3 - 1333120*n^2 + 226944*n + 161280)*a(n - 8) + (128*n^7 - 2192*n^6 + 12048*n^5 - 8240*n^4 - 151248*n^3 + 565312*n^2 - 765248*n + 349440)*a(n - 6) + ( - 4*n^13 + 364*n^12 - 14924*n^11 + 364364*n^10 - 5897892*n^9 + 66678612*n^8 - 540145892*n^7 + 3163772612*n^6 - 13344475144*n^5 + 39830815024*n^4 - 81255012384*n^3 + 106386868224*n^2 - 79211036160*n + 24908083200)*a(n - 14) + ( - 4*n^13 + 360*n^12 - 14612*n^11 + 353496*n^10 - 5674812*n^9 + 63680760*n^8 - 512439356*n^7 + 2983811688*n^6 - 12520194544*n^5 + 37201987680*n^4 - 75598952832*n^3 + 98660630016*n^2 - 73265264640*n + 22992076800)*a(n - 13) + ( - 16*n^12 + 1244*n^11 - 43208*n^10 + 884620*n^9 - 11860728*n^8 + 109396452*n^7 - 709293464*n^6 + 3243764260*n^5 - 10331326456*n^4 + 22203205904*n^3 - 30301280928*n^2 + 23300910720*n - 7504358400)*a(n - 12) + ( - n^14 + 105*n^13 - 5005*n^12 + 143325*n^11 - 2749747*n^10 + 37312275*n^9 - 368411615*n^8 + 2681453775*n^7 - 14409322928*n^6 + 56663366760*n^5 - 159721605680*n^4 + 310989260400*n^3 - 392156797824*n^2 + 283465647360*n - 87178291200)*a(n - 15)). (End)
a(n) = Sum_{d=0..floor(n/2), c=0..floor(n/2-d), b=0..(n-2c-2d), f=0..(n-2c-2d-b), k=0..min(n-b-2c-2d-f, 2n-2f-2b-3c-4d), j=0..floor(k/2+f)} ((-1)^(k+2f-j+d)*n!*(k+2f)!(2(2n-k-2f-2b-3c-4d))!) / (2^(5n-2k-2f-3b-8c-7d) * 3^(n-b-c-2d-k-f)*(2n-k-2f-2b-3c-4d)!*(k+2f-2j)!*j!*b!*c!*d!*k!*f!*(n-b-2c-2d-k-f)!). - Shanzhen Gao, Jun 05 2009
E.g.f.: (1+x-(1/3)*x^2-(1/6)*x^3)^(-1/2)*hypergeom([1/4, 3/4],[],-12*x*(x+2)*(x-1)/(x^3+2*x^2-6*x-6)^2)*exp(-x*(x^2-6)/(8*x+16)). - Mark van Hoeij, Nov 07 2011
a(n) ~ n^(2*n) * 2^(n+1/2) / (3^n * exp(2*n+15/4)). - Vaclav Kotesovec, Mar 11 2014

Extensions

More terms from Vladeta Jovovic, Mar 26 2001

A333467 Array read by antidiagonals: T(n,k) is the number of k-regular multigraphs on n labeled nodes, loops allowed, n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 5, 3, 1, 1, 0, 3, 0, 17, 0, 1, 1, 1, 3, 15, 47, 73, 15, 1, 1, 0, 4, 0, 138, 0, 388, 0, 1, 1, 1, 4, 34, 306, 2021, 4720, 2461, 105, 1, 1, 0, 5, 0, 670, 0, 43581, 0, 18155, 0, 1, 1, 1, 5, 65, 1270, 25050, 291001, 1295493, 1256395, 152531, 945, 1
Offset: 0

Views

Author

Andrew Howroyd, Mar 23 2020

Keywords

Examples

			Array begins:
=============================================================
n\k | 0   1     2       3        4          5           6
----+--------------------------------------------------------
  0 | 1   1     1       1        1          1           1 ...
  1 | 1   0     1       0        1          0           1 ...
  2 | 1   1     2       2        3          3           4 ...
  3 | 1   0     5       0       15          0          34 ...
  4 | 1   3    17      47      138        306         670 ...
  5 | 1   0    73       0     2021          0       25050 ...
  6 | 1  15   388    4720    43581     291001     1594340 ...
  7 | 1   0  2461       0  1295493          0   159207201 ...
  8 | 1 105 18155 1256395 50752145 1296334697 23544232991 ...
  ...
		

Crossrefs

Rows n=0..3 are A000012, A059841, A008619, A006003.
Columns k=0..4 are A000012, A123023, A002135, A005814, A005816.
Cf. A059441 (graphs), A167625 (unlabeled nodes), A333351 (without loops).

Programs

  • Maple
    b:= proc(l, i) option remember; (n-> `if`(n=0, 1,
         `if`(l[n]=0, b(sort(subsop(n=[][], l)), n-1),
         `if`(i<1, 0, b(l, i-1)+`if`(i=n, `if`(l[n]>1,
          b(subsop(n=l[n]-2, l), i), 0), `if`(l[i]>0,
          b(subsop(i=l[i]-1, n=l[n]-1, l), i), 0))))))(nops(l))
        end:
    A:= (n, k)-> b([k$n], n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 23 2020
  • Mathematica
    b[l_, i_] := b[l, i] = Function[n, If[n == 0, 1, If[l[[n]] == 0, b[Sort[ ReplacePart[l, n -> Nothing]], n-1], If[i < 1, 0, b[l, i-1] + If[i == n, If[l[[n]] > 1, b[ReplacePart[l, n -> l[[n]]-2], i], 0], If[l[[i]] > 0, b[ReplacePart[l, {i -> l[[i]]-1, n -> l[[n]]-1}], i], 0]]]]]][Length[l]];
    A[n_, k_] := b[Table[k, {n}], n];
    Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 07 2020, after Alois P. Heinz *)
  • PARI
    MultigraphsWLByDegreeSeq(n, limit, ok)={
      local(M=Map(Mat([0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(recurse(r, h, p, q, v, e) = if(!p, if(ok(x^e+q, r), acc(x^e+q, v)), my(i=poldegree(p), t=pollead(p)); self()(r, limit, p-t*x^i, q+t*x^i, v, e); for(m=1, h-i, for(k=1, min(t, (limit-e)\m), self()(r, if(k==t, limit, i+m-1), p-k*x^i, q+k*x^(i+m), binomial(t, k)*v, e+k*m)))));
      for(r=1, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], forstep(e=0, limit, 2, recurse(n-r, limit, src[i, 1], 0, src[i, 2], e)))); Mat(M);
    }
    T(n, k)={if(n%2&&k%2, 0, vecsum(MultigraphsWLByDegreeSeq(n, k, (p, r)->subst(deriv(p), x, 1)>=(n-2*r)*k)[, 2]))}
    { for(n=0, 8, for(k=0, 6, print1(T(n, k), ", ")); print) }

A188405 Number of (4*n) X n binary arrays with rows in nonincreasing order, 4 ones in every column and no more than 2 ones in any row.

Original entry on oeis.org

1, 1, 5, 42, 641, 14751, 478711, 20758650, 1158207312, 80758709676, 6877184737416, 701994697409136, 84574042067524470, 11870290445670605262, 1919446717950100963626, 354168049679464581788796, 73947210994621695613727526, 17342441149450781813176059990
Offset: 0

Views

Author

R. H. Hardin, Mar 30 2011

Keywords

Comments

Number of n X n symmetric matrices with nonnegative integer entries and all row and column sums 4. - Andrew Howroyd, Apr 07 2020
In A005816 matrix elements on the diagonal are counted with a factor 2. This sequence here counts labeled multigraphs with n nodes (may be disconnected, undirected edges) without loops and degree at each node <=4. - R. J. Mathar, Jun 05 2022

Examples

			All solutions for 8X2
..1..1....1..1....1..1....1..0....1..1
..1..0....1..1....1..1....1..0....1..1
..1..0....1..1....1..0....1..0....1..1
..1..0....1..0....1..0....1..0....1..1
..0..1....0..1....0..1....0..1....0..0
..0..1....0..0....0..1....0..1....0..0
..0..1....0..0....0..0....0..1....0..0
..0..0....0..0....0..0....0..1....0..0
		

Crossrefs

Row 4 of A188403.
Cf. A139670 (matrix elements 0 or 1).

Extensions

a(0)=1 prepended and terms a(12) and beyond from Andrew Howroyd, Apr 07 2020
Showing 1-3 of 3 results.