cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A059441 Triangle T(n,k) (n >= 1, 0 <= k <= n-1) giving number of regular labeled graphs with n nodes and degree k, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 3, 3, 1, 1, 0, 12, 0, 1, 1, 15, 70, 70, 15, 1, 1, 0, 465, 0, 465, 0, 1, 1, 105, 3507, 19355, 19355, 3507, 105, 1, 1, 0, 30016, 0, 1024380, 0, 30016, 0, 1, 1, 945, 286884, 11180820, 66462606, 66462606, 11180820, 286884, 945, 1
Offset: 1

Views

Author

N. J. A. Sloane, Feb 01 2001

Keywords

Examples

			1;
1,   1;
1,   0,       1;
1,   3,       3,        1;
1,   0,      12,        0,          1;
1,  15,      70,       70,         15,    1;
1,   0,     465,        0,        465,    0,   1;
1, 105,    3507,    19355,      19355, 3507, 105, 1;
1,   0,   30016,        0,    1024380, ...;
1, 945,  286884, 11180820,   66462606, ...;
1,   0, 3026655,        0, 5188453830, ...;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 279.

Crossrefs

Row sums are A295193.
Columns: A123023 (k=1), A001205 (k=2), A002829 (k=3, with alternating zeros), A005815 (k=4), A338978 (k=5, with alternating zeros), A339847 (k=6).
Cf. A051031 (unlabeled case), A324163 (connected case), A333351 (multigraphs).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1+Times@@x/@s,{s,Subsets[Range[n],{2}]}],Sequence@@Table[{x[i],0,k},{i,n}]],{n,9},{k,0,n-1}] (* Gus Wiseman, Dec 24 2018 *)
  • PARI
    for(n=1, 10, print(A059441(n))) \\ See A295193 for script, Andrew Howroyd, Aug 28 2019

Extensions

a(37)-a(55) from Andrew Howroyd, Aug 25 2017

A058831 Number of labeled n-node 4-valent graphs containing two nonadjacent double edges.

Original entry on oeis.org

0, 0, 0, 0, 3, 30, 405, 10080, 369180, 17959158, 1092909510, 81043601760, 7195434965235, 753877707936210, 92048844661576803, 12957249486666966390, 2083048648390795634640, 379312444955136162744540
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2001

Keywords

Comments

In Table I of the Read-Wormald paper the c and d rows actually show double the numbers (Wormald). - Emeric Deutsch, Jan 26 2005

References

  • R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.

Crossrefs

Programs

  • Maple
    a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(c[n],n=0..20); # A058831(n)=c[n] - Emeric Deutsch, Jan 26 2005

Formula

Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005

Extensions

More terms from Emeric Deutsch, Jan 26 2005

A058832 Number of labeled n-node 4-valent graphs containing two adjacent double edges.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 630, 28560, 1330560, 74314800, 5057098200, 413836259760, 40145915529720, 4558576721418720, 599227672837944150, 90306248160926397600, 15470047011889029399840, 2989635481745274974582880
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2001

Keywords

Comments

In Table I of the Read-Wormald paper the c and d rows actually show double the numbers (Wormald). - Emeric Deutsch, Jan 26 2005

Crossrefs

Programs

  • Maple
    a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 21 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(d[n],n=0..21); # A058832(n)=d[n] # Emeric Deutsch, Jan 26 2005

Formula

Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005

Extensions

More terms from Emeric Deutsch, Jan 26 2005

A058830 Number of labeled n-node 4-valent graphs containing a single double edge.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 90, 3150, 131040, 6667920, 416593800, 31506454980, 2841125225400, 301392906637680, 37173926260360890, 5276692469017119150, 854273993613848327520, 156491796247034356836000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2001

Keywords

References

  • R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.

Crossrefs

Programs

  • Maple
    a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(b[n],n=0..20); # A058830(n)=b[n] - Emeric Deutsch, Jan 26 2005

Formula

Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005

Extensions

More terms from Emeric Deutsch, Jan 26 2005

A058833 Number of labeled n-node 4-valent graphs containing 3 double edges, a distinguished unordered pair of which are adjacent.

Original entry on oeis.org

0, 0, 0, 3, 0, 30, 360, 6930, 196728, 8115660, 433362960, 28552545945, 2276033387760, 216132739612218, 24118774853584320, 3125242929676107240, 465357404934002231280, 78908446775174591638440
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2001

Keywords

References

  • R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.

Crossrefs

Programs

  • Maple
    a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(e[n],n=0..20); # A058833(n)=e[n] - Emeric Deutsch, Jan 26 2005

Formula

Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005

Extensions

More terms from Emeric Deutsch, Jan 26 2005

A058834 Number of labeled n-node 4-valent graphs containing a triple edge.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 420, 16800, 763560, 43142400, 2979900000, 247022123040, 24219716320800, 2774585262168720, 367448041040780700, 55728771791388696000, 9599063849925363974160, 1863895566816244057824000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2001

Keywords

References

  • R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.

Crossrefs

Programs

  • Maple
    a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 21 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(f[n],n=0..21); # A058834(n)=f[n] - Emeric Deutsch, Jan 26 2005

Formula

Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005

Extensions

More terms from Emeric Deutsch, Jan 26 2005

A058835 Number of labeled n-node 4-valent graphs containing a triple edge and a double edge.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 180, 3150, 105840, 4740120, 260366400, 17411708160, 1402666372800, 134317686068280, 15090968212259940, 1966411584852664950, 294177397021128260640, 50080787858122187821200
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2001

Keywords

References

  • R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.

Crossrefs

Programs

  • Maple
    a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p - 1)*(2*p - 9)*a[p - 1] + (2*p - 8)*b[p - 1] + c[p - 1])/3: b[p]:=(6*p*(p - 1)*a[p - 1] + 4*p*b[p - 1] + p*d[p - 1])/2: c[p]:=(6*p*(p - 3)*b[p - 1] + 8*p*c[p - 1] + 4*p*d[p - 1] + p*e[p - 1])/4: d[p]:=p*b[p - 1] + p*f[p - 1]:e[p]:=(4*p*c[p - 1] + 4*p*d[p - 1] + 2*p*g[p - 1] + p*(p - 1)*(p - 2)*a[p - 3])/2:f[p]:=p*(p - 1)*((4*p - 8)*a[p - 2] + 2*b[p - 2] + h[p - 2])/2: g[p]:=p*(p - 1)*(4*(p - 3)*b[p - 2] + 4*c[p - 2] + 4*d[p - 2] + 2*f[p - 2] + i[p - 2])/2:h[p]:=p*((2*p - 2)*a[p - 1] + b[p - 1]): i[p]:=p*((2*p - 4)*b[p - 1] + 2*c[p - 1] + 2*d[p - 1] + f[p - 1] + h[p - 1]): od: seq(g[n],n=0..20); # A058835(n)=g[n] - Emeric Deutsch, Jan 26 2005

Formula

Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005

Extensions

More terms from Emeric Deutsch, Jan 26 2005

A058836 Number of labeled n-node 4-valent graphs containing a loop.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 60, 1890, 77280, 3966480, 251067600, 19204305120, 1747829270880, 186823771322760, 23188769670126060, 3309132464435848050, 538177754986005214080, 98975242794632514448320
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2001

Keywords

References

  • R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.

Crossrefs

Programs

  • Maple
    a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(h[n],n=0..20); # A058836(n)=h[n] - Emeric Deutsch, Jan 26 2005

Formula

Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005

Extensions

More terms from Emeric Deutsch, Jan 26 2005

A058837 Number of labeled n-node 4-valent graphs containing a loop and a double edge.

Original entry on oeis.org

0, 0, 0, 0, 0, 30, 360, 12390, 492240, 24517080, 1499961960, 111400817220, 9894176455680, 1036335934435230, 126455286914316360, 17785504207015034490, 2856590783311452576480, 519670214181036892602720
Offset: 0

Views

Author

N. J. A. Sloane, Jan 05 2001

Keywords

References

  • R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.

Crossrefs

Programs

  • Maple
    a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(i[n],n=0..20); # A058837(n)=i[n] - Emeric Deutsch, Jan 26 2005

Formula

Read and Wormald give recurrence relations involving all sequences A005815 and A058830-A058837 (see the Maple program). - Emeric Deutsch, Jan 26 2005

Extensions

More terms from Emeric Deutsch, Jan 26 2005

A005816 Number of 4-valent labeled graphs with n nodes where multiple edges and loops are allowed.

Original entry on oeis.org

1, 1, 3, 15, 138, 2021, 43581, 1295493, 50752145, 2533755933, 157055247261, 11836611005031, 1066129321651668, 113117849882149725, 13965580274228976213, 1985189312618723797371, 321932406123733248625851, 59079829666712346141491403, 12182062872168618012045410805
Offset: 0

Views

Author

Keywords

Comments

Each loop contributes 2 to the valency of its node.

References

  • Goulden, I. P.; Jackson, D. M.; Reilly, J. W.; The Hammond series of a symmetric function and its application to P-recursiveness. SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 179-193.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=4 of A333467.
Cf. A005815.
Cf. A129429 (unlabeled), A033301.

Formula

a(n) = N{E_n[S_4] * S_{2n}[S_2]}.

Extensions

Definition corrected by appending "where multiple edges and loops are allowed", reference to Read 1959, formula from Read 1959 (5.11), and new terms a(16), a(17), a(18) contributed by Jason Kimberley, Jan 22 2010
Showing 1-10 of 12 results. Next