cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A053533 Expansion of e.g.f.: (1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6 -x^4/8).

Original entry on oeis.org

1, 0, 0, 0, 0, 12, 60, 360, 2520, 20160, 199584, 2147040, 25043040, 315485280, 4274281440, 62237343168, 968728662720, 16046598597120, 281802435747840, 5229395457937920, 102253297006250496, 2101387824575550720, 45281611027331723520
Offset: 0

Views

Author

N. J. A. Sloane, Jan 16 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.15(a), k=5.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (1-x)^(-1/2)*Exp(-x/2 -x^2/4 -x^3/6 -x^4/8) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
    
  • Mathematica
    With[{m = 30}, CoefficientList[Series[(1-x)^(-1/2)*Exp[-x/2 -x^2/4 -x^3/6 -x^4/8], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( (1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6 -x^4/8) )) \\ G. C. Greubel, May 15 2019
    
  • Sage
    m = 30; T = taylor((1-x)^(-1/2)*exp(-x/2 -x^2/4 -x^3/6 -x^4/8), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019

Formula

a(n) ~ sqrt(2) * n^n / exp(n+25/24). - Vaclav Kotesovec, Aug 04 2014

A202065 The number of simple labeled graphs on 2n nodes whose connected components are even length cycles.

Original entry on oeis.org

1, 0, 3, 60, 2835, 219240, 25519725, 4169185020, 910363278825, 256123949281200, 90240816705714675, 38923077574032151500, 20174526711617730727275, 12373285262231460281715000, 8863077725980930704895768125, 7332455066541096999983523547500
Offset: 0

Views

Author

Geoffrey Critzer, Dec 10 2011

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(4*n^3-n)*a(n-1) + (4*n^2+2*n)*a(n) - a(n+1)=0,a(0)=1,a(1)=0},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Mar 02 2017
  • Mathematica
    nn = 30; a = Log[1/(1 - x^2)^(1/4)] - x^2/4; Table[i, {i, 0, nn, 2}]! CoefficientList[Series[Exp[a], {x, 0, nn}], x][[Table[i, {i, 1, nn+1, 2}]]]
    Table[((2 n)!/n!) HypergeometricPFQ[{1/4, -n}, {}, 4] (-1/4)^n, {n, 0, 15}] (* Benedict W. J. Irwin, May 24 2016 *)

Formula

E.g.f. for aerated sequence: exp(-x^2/4)/(1-x^2)^(1/4).
a(n) ~ (2*n)! * 2^(1/4)*exp(-1/4)*Gamma(3/4)/((2*n)^(3/4)*Pi). - Vaclav Kotesovec, Sep 24 2013
a(n) = ((2n)!/n!)*2F0(1/4,-n;;4)*(-1/4)^n. - Benedict W. J. Irwin, May 24 2016
(4n^3-n)a(n-1) + (4n^2+2n)a(n) - a(n+1) = 0. - Robert Israel, Mar 02 2017

Extensions

a(14) and e.g.f. corrected by Robert Israel, Mar 02 2017
Showing 1-2 of 2 results.