A000988 Number of one-sided polyominoes with n cells.
1, 1, 1, 2, 7, 18, 60, 196, 704, 2500, 9189, 33896, 126759, 476270, 1802312, 6849777, 26152418, 100203194, 385221143, 1485200848, 5741256764, 22245940545, 86383382827, 336093325058, 1309998125640, 5114451441106, 19998172734786, 78306011677182, 307022182222506, 1205243866707468, 4736694001644862
Offset: 0
Keywords
Examples
a(0) = 1 as there is 1 empty polyomino with #cells = 0. - _Fred Lunnon_, Jun 24 2020
References
- S. W. Golomb, Polyominoes. Scribner's, NY, 1965; second edition (Polyominoes: Puzzles, Packings, Problems and Patterns) Princeton Univ. Press, 1994.
- J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
- W. F. Lunnon, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- John Mason, Table of n, a(n) for n = 0..50 (terms 0..45,47,49 from Toshihiro Shirakawa).
- W. F. Lunnon, Counting multidimensional polyominoes, Computer Journal 18(4) (1975), 366-367.
- Ed Pegg, Jr., Illustrations of polyforms.
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9(3) (2005), 609-640. [Broken link]
- Jaime Rangel-Mondragon, Polyominoes and Related Families, The Mathematica Journal, 9(3) (2005), 609-640. [From the internet archive]
- D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
- Toshihiro Shirakawa, Harmonic Magic Square, pp. 3-4: Enumeration of Polyominoes considering the symmetry, April 2012.
- Eric Weisstein's World of Mathematics, Polyomino.
- Wikipedia, Polyomino.
Crossrefs
Formula
Extensions
a(0) = 1 added by N. J. A. Sloane, Jun 24 2020
Comments