A000997 From a differential equation.
0, 1, 0, 0, 1, 2, 3, 5, 12, 36, 110, 326, 963, 2964, 9797, 34818, 130585, 506996, 2018454, 8238737, 34627390, 150485325, 677033911, 3147372610, 15066340824, 74025698886, 372557932434, 1919196902205, 10119758506626, 54627382038761, 301832813494746
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- S. Tauber, On generalizations of the exponential function, Amer. Math. Monthly, 67 (1960), 763-767.
Crossrefs
Cf. A000995.
Programs
-
Maple
a := proc(n) option remember; local k; if n<=2 then [0, 1, 0][n+1] else add (binomial(n-3, k)*a(k), k=1..n-3) fi end: seq(a(n), n=0..29); # Sean A. Irvine, Mar 27 2015
-
Mathematica
m = 30; A[_] = 0; Do[A[x_] = x (1 + x^2 A[x/(1 - x)]/(1 - x)) + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Oct 23 2019 *)
Formula
G.f. A(x) satisfies: A(x) = x*(1 + x^2*A(x/(1 - x))/(1 - x)). - Ilya Gutkovskiy, May 02 2019
Extensions
More terms from Sean A. Irvine, Mar 27 2015
Comments