cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000998 From a differential equation.

Original entry on oeis.org

1, 3, 6, 11, 24, 69, 227, 753, 2451, 8004, 27138, 97806, 375313, 1511868, 6292884, 26826701, 116994453, 523646202, 2414394601, 11487130362, 56341183365, 284110648983, 1468690344087, 7766823788295, 41976012524088, 231812530642644, 1308325741771908
Offset: 0

Views

Author

Keywords

Comments

When preceded by {0, 0, 1, 0, 0}, this sequence shifts 3 places under binomial transform. - Olivier Gérard, Aug 12 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [0$2, 1][n+1],
          add(binomial(n-3, j)*b(j), j=0..n-3))
        end:
    a:= n-> b(n+5):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 21 2019
  • Mathematica
    b[n_] := b[n] = If[n<3, {0, 0, 1}[[n+1]], Sum[Binomial[n-3, j] b[j], {j, 0, n-3}]];
    a[n_] := b[n+5];
    a /@ Range[0, 30] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)

Formula

G.f.: A(x) = Sum(x^(3*k-3)/Product(1-l*x,l = 0 .. k)^3,k = 0 .. infinity). - Vladeta Jovovic, Feb 05 2008

Extensions

More terms from Vladeta Jovovic, Feb 05 2008