cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000999 5-adic valuation of binomial(2*n,n): largest k such that 5^k divides binomial(2*n, n).

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[IntegerExponent[Binomial[2*n, n], 5], {n, 0, 100}] (* T. D. Noe, Jun 21 2012 *)
  • PARI
    a(n)=if(n<0,0,valuation(binomial(2*n,n),5))
    
  • PARI
    a(n) = my(v=digits(n,5),c=0); sum(i=0,#v-1, c=(c+v[#v-i]>=3)); \\ Kevin Ryde, Mar 07 2023

Formula

From Amiram Eldar, Feb 12 2021: (Start)
a(n) = A112765(A000984(n)).
a(n) = (2*A053824(n) - A053824(2*n))/4. (End)

Extensions

More terms from Michael Somos, Jun 27 2002