A001039 a(n) = (p^p-1)/(p-1) where p = prime(n).
3, 13, 781, 137257, 28531167061, 25239592216021, 51702516367896047761, 109912203092239643840221, 949112181811268728834319677753, 91703076898614683377208150526107718802981
Offset: 1
References
- S. Mattarei, The orders of nonsingular derivations of modular Lie algebras, Isr. J. Math., 132 (2002), 265-275.
- T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176.
- C. Radoux, Nombres de Bell, modulo p premier, et extensions de degré p de F_p. C.R. Acad. Sci. Paris Ser. A-B, 281(21) (1975) A879-A882.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..26
- J. Levine and R. E. Dalton, Minimum periods, modulo p, of first-order Bell exponential integers, Math. Comp., 16 (1962), 416-423.
- W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, Arithmetic properties of Bell numbers to a composite modulus I, Acta Arithmetica 35 (1979), pp. 1-16. [From _N. J. A. Sloane_, Feb 07 2009]
- P. L. Montgomery, S. Nahm, and S. S. Wagstaff Jr, The period of the Bell numbers modulo a prime, Math. Comp. 79 (2010), 1793-1800.
Programs
-
Maple
for i from 1 to 20 do printf(`%d,`,(ithprime(i)^ithprime(i) -1)/(ithprime(i)-1)) od:
-
Mathematica
Table[(Prime[n]^Prime[n] - 1)/(Prime[n] - 1), {n, 1, 10}] (#^#-1)/(#-1)&/@Prime[Range[10]] (* Harvey P. Dale, Apr 09 2016 *)
Extensions
More terms from James Sellers, Jul 10 2000
Comments