cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001089 Number of permutations of [n] containing exactly 2 increasing subsequences of length 3.

Original entry on oeis.org

0, 0, 0, 0, 3, 24, 133, 635, 2807, 11864, 48756, 196707, 783750, 3095708, 12152855, 47500635, 185082495, 719559600, 2793121080, 10830450780, 41965864794, 162539516448, 629399492330, 2437072038302, 9437097796918
Offset: 0

Views

Author

John Thomas Noonan [ noonan(AT)euclid.math.temple.edu ]

Keywords

Examples

			For n=4, there are 4! = 24 permutations of 1234. The identity permutation 1234 has four increasing subsequences of length 3 (123, 124, 134, and 234), and the permutation 2314 has only one increasing subsequence of length 3 (234). Only the permutations 1243, 1324, and 2134 have exactly two increasing subsequences of length 3, and since there are three of them, a(4) = 3. - _Michael B. Porter_, Sep 03 2016
		

Crossrefs

Leading column of A229158.

Programs

  • GAP
    Concatenation([0,0,0,0], List([4..30], n-> (100+117*n+59*n^2)* Binomial(2*n,n-4)/(2*n*(2*n-1)*(n+5)))); # G. C. Greubel, Sep 19 2019
  • Magma
    [0,0,0,0] cat [(100+117*n+59*n^2)*Binomial(2*n,n-4)/(2*n*(2*n-1)*(n+5)): n in [4..30]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    seq(`if`(n=0, 0, (100+117*n+59*n^2)*binomial(2*n, n-4)/(2*n*(2*n-1)*(n+5))), n = 0..30); # G. C. Greubel, Sep 19 2019
  • Mathematica
    {0}~Join~CoefficientList[Series[((x^5-3x^4+5x^3-10x^2+6*x-1)(1-4x)^(1/2) - 5x^5+7x^4-17x^3+20x^2-8*x+1)/(2x^6), {x,0,23}], x] (* or *)
    {0}~Join~CoefficientList[Series[x^5*((1-(1-4x)^(1/2))/(2x))^11 +3x^3*( (1-(1-4x)^(1/2))/(2x))^8, {x,0,23}], x] (* Michael De Vlieger, Sep 03 2016 *)
  • PARI
    a(n) = (100+117*n+59*n^2)*binomial(2*n,n-4)/(2*n*(2*n-1)*(n+5)) \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    [0,0,0,0]+[(100+117*n+59*n^2)*binomial(2*n,n-4)/(2*n*(2*n-1)*(n+5)) for n in (4..30)] # G. C. Greubel, Sep 19 2019
    

Formula

Noonan and Zeilberger conjectured that a(n) = ((59*n^2+117*n+100) /(2*n*(2*n-1)*(n+5))) *binomial(2*n,n-4). This was proved by Fulmek.
G.f.: ((x^5 -3*x^4 +5*x^3 -10*x^2 +6*x -1)*(1-4*x)^(1/2) - 5*x^5 +7*x^4 -17*x^3 +20*x^2 -8*x +1)/(2*x^6). - Mark van Hoeij, Oct 25 2011
G.f.: x^5*C(x)^11 + 3*x^3*C(x)^8, where C(x) is g.f. for the Catalan numbers (A000108). - Michael D. Weiner, Sep 02 2016
D-finite with recurrence -(n+5)*(n-4)*(59*n^2-n+42)*a(n) +2*(n-1)*(2*n-3)*(59*n^2 +117*n+100)*a(n-1) = 0, equivalent to recurrence of [Noonan-Zeilberger] binomial. - R. J. Mathar, Jan 04 2017

Extensions

Terms a(25) onward added by G. C. Greubel, Sep 19 2019