A001101 Moran numbers: k such that k/(sum of digits of k) is prime.
18, 21, 27, 42, 45, 63, 84, 111, 114, 117, 133, 152, 153, 156, 171, 190, 195, 198, 201, 207, 209, 222, 228, 247, 261, 266, 285, 333, 370, 372, 399, 402, 407, 423, 444, 465, 481, 511, 516, 518, 531, 555, 558, 592, 603
Offset: 1
References
- Bill Moran, Problem 2074: The Moran Numbers, J. Rec. Math., Vol. 25 No. 3, pp. 215, 1993.
Links
- Aaron Toponce, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Amin Witno, Numbers which factor as their digital sum times a prime, International Journal of Open Problems in Computer Science and Mathematics 3:2 (2010), pp. 132-136.
Crossrefs
Programs
-
Haskell
import Data.List (findIndices) a001101 n = a001101_list !! (n-1) a001101_list = map succ $ findIndices p [1..] where p n = m == 0 && a010051 n' == 1 where (n', m) = divMod n (a007953 n) -- Reinhard Zumkeller, Jun 16 2011
-
Maple
filter:= proc(n) local q; q:= n/convert(convert(n,base,10),`+`); q::integer and isprime(q) end proc: select(filter, [$1..1000]); # Robert Israel, May 13 2025
-
Mathematica
Select[Range[700], PrimeQ[ # / Total[IntegerDigits[#]]]&] (* Jean-François Alcover, Nov 30 2011 *)
-
PARI
is(n)=(k->denominator(k)==1&&isprime(k))(n/sumdigits(n)) \\ Charles R Greathouse IV, Jan 10 2014
-
Python
from sympy import isprime def ok(n): s = sum(map(int, str(n))); return s and n%s==0 and isprime(n//s) print([k for k in range(604) if ok(k)]) # Michael S. Branicky, Mar 28 2022
Extensions
Name corrected by Charles R Greathouse IV, Jan 10 2014
Comments