cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A334371 Starts of runs of 3 consecutive Moran numbers (A001101).

Original entry on oeis.org

3031, 13116, 46824, 201614, 456325, 1310412, 1499434, 1825225, 2217620, 2318423, 2522540, 2784634, 3132380, 3276024, 3931226, 4013113, 4555476, 5017340, 5211380, 6309602, 6338910, 6526835, 7197154, 8678920, 9108023, 9258002, 10256420, 10533620, 10614266, 10810824
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2020

Keywords

Examples

			3031 is a term since 3031/(3+0+3+1) = 433, 3032/(3+0+3+2) = 379 and 3033/(3+0+3+3) = 337 are all primes.
		

Crossrefs

Subsequence of A001101, A085775 and A154701.

Programs

  • Mathematica
    moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; m = moranQ /@ Range[3]; seq = {}; Do[If[And @@ m, AppendTo[seq, k - 3]]; m = Join[Rest[m], {moranQ[k]}], {k, 4, 10^6}]; seq

A334372 Starts of runs of 4 consecutive Moran numbers (A001101).

Original entry on oeis.org

21481224, 22314620, 25502420, 25502421, 32432425, 130062260, 147026913, 713021425, 922216713, 938710112, 1012101135, 1019292153, 1113068913, 1420791155, 1545743565, 1671500190, 1805406154, 1941702882, 2010317425, 2027025025, 2200277555, 2307662313, 2437253313
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2020

Keywords

Examples

			21481224 is a term since 21481224/(2+1+4+8+1+2+2+4) = 895051, 21481225/(2+1+4+8+1+2+2+5) = 859249, 21481226/(2+1+4+8+1+2+2+6) = 826201 and 21481227/(2+1+4+8+1+2+2+7) = 795601 are all primes.
		

Crossrefs

Subsequence of A001101, A085775, A141769 and A334371.
Cf. A235397.

Programs

  • Mathematica
    moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; m = moranQ /@ Range[4]; seq = {}; Do[If[And @@ m, AppendTo[seq, k - 4]]; m = Join[Rest[m], {moranQ[k]}], {k, 5, 3 * 10^7}]; seq

A334375 a(n) equals the n-th Moran number (A001101) divided by its sum of digits.

Original entry on oeis.org

2, 7, 3, 7, 5, 7, 7, 37, 19, 13, 19, 19, 17, 13, 19, 19, 13, 11, 67, 23, 19, 37, 19, 19, 29, 19, 19, 37, 37, 31, 19, 67, 37, 47, 37, 31, 37, 73, 43, 37, 59, 37, 31, 37, 67, 37, 43, 37, 79, 73, 61, 41, 43, 37, 89, 73, 67, 47, 37, 61, 53, 37, 337, 127, 113, 109
Offset: 1

Views

Author

Rémy Sigrist, Apr 25 2020

Keywords

Examples

			For n = 42:
- A001101(42) = 555,
- A007953(555) = 15,
- hence a(42) = 555/15 = 37.
		

Crossrefs

Programs

  • PARI
    for (n=1, 1090, if (n%(s=sumdigits(n))==0 && isprime(n/s), print1 (n/s", ")))

Formula

a(n) = A001101(n) / A007953(A001101(n)).

A334373 Starts of runs of 5 consecutive Moran numbers (A001101).

Original entry on oeis.org

25502420, 5301223225, 13242121221, 32005512020, 74761736450, 213415171233, 221221400424, 232212103220, 243857053493, 685392911334, 732258727252, 889011113804, 905191111482, 1013460525033, 1080719141080, 1229198438214, 1461057000513, 1961972092132, 2157993351414
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2020

Keywords

Examples

			25502420 is a term since 25502420, 25502421, 25502422, 25502423 and 25502424 are all Moran numbers.
		

Crossrefs

Subsequence of A001101, A085775, A330928, A334371 and A334372.
Cf. A235397.

Programs

  • Mathematica
    moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; m = moranQ /@ Range[5]; seq = {}; Do[If[And @@ m, AppendTo[seq, k - 5]]; m = Join[Rest[m], {moranQ[k]}], {k, 6, 10^8}]; seq

Extensions

Terms a(6) and beyond from Giovanni Resta, Apr 27 2020

A337861 Numbers that can be written as the sum of two Moran numbers (see A001101).

Original entry on oeis.org

36, 39, 42, 45, 48, 54, 60, 63, 66, 69, 72, 81, 84, 87, 90, 102, 105, 108, 111, 126, 129, 132, 135, 138, 141, 144, 147, 151, 153, 154, 156, 159, 160, 162, 168, 170, 171, 173, 174, 175, 177, 178, 179, 180, 183, 189, 192, 194, 195, 196, 197, 198, 201, 208, 211
Offset: 1

Views

Author

Marius A. Burtea, Oct 21 2020

Keywords

Examples

			36 = 18 + 18 = A001101(1) + A001101(1), so 36 is a term.
39 = 18 + 21 = A001101(1) + A001101(2), so 39 is a term.
87 = 42 + 45 = A001101(4) + A001101(5), so 87 is a term.
		

Crossrefs

Programs

  • Magma
    moran:=func; [n:n in [1..220] | #RestrictedPartitions(n,2,{k:k in [1..n-1] | moran(k)}) ne 0];
  • Mathematica
    m = 211; morans = Select[Range[m], PrimeQ[#/Plus @@ IntegerDigits[#]] &]; Select[Range[m], Length[IntegerPartitions[#, {2}, morans]] > 0 &] (* Amiram Eldar, Oct 21 2020 *)

A334376 a(n) is the sum of digits of the n-th Moran number (A001101).

Original entry on oeis.org

9, 3, 9, 6, 9, 9, 12, 3, 6, 9, 7, 8, 9, 12, 9, 10, 15, 18, 3, 9, 11, 6, 12, 13, 9, 14, 15, 9, 10, 12, 21, 6, 11, 9, 12, 15, 13, 7, 12, 14, 9, 15, 18, 16, 9, 17, 15, 18, 9, 10, 12, 18, 18, 21, 9, 11, 12, 18, 24, 15, 18, 27, 3, 8, 9, 10, 15, 18, 3, 7, 9, 12, 16
Offset: 1

Views

Author

Rémy Sigrist, Apr 25 2020

Keywords

Examples

			For n = 42:
- A001101(42) = 555,
- A007953(555) = 15,
- hence a(42) = 15.
		

Crossrefs

Programs

  • PARI
    for (n=1, 1168, if (n%(s=sumdigits(n))==0 && isprime(n/s), print1 (s", ")))

Formula

a(n) = A007953(A001101(n)).

A349485 Moran numbers whose arithmetic derivative is also a Moran number (A001101).

Original entry on oeis.org

18, 27, 153, 803, 1101, 1503, 1926, 3070, 3077, 3546, 4577, 6246, 6315, 8717, 10566, 11646, 14093, 15310, 15426, 18456, 24936, 30617, 33576, 34326, 43079, 50418, 59026, 62004, 69781, 71009, 71802, 72587, 74616, 77593, 80118, 94056, 110138, 111546, 112626, 113166
Offset: 1

Views

Author

Marius A. Burtea, Nov 20 2021

Keywords

Comments

Conjecture: The sequence is infinite.

Examples

			18 = A001101(1) and 18' = 21 = A001101(2), so 18 is a term.
153 = A001101(13) and 153' = 111 = A001101(8), so 153 is a term.
		

Crossrefs

Cf. A001101 (Moran number), A003415 (arithmetic derivative).

Programs

  • Magma
    f:=func; moran:=func; [n:n in [2..114000]| moran(n) and moran(Floor(f(n)))];
  • Mathematica
    moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[120000], And @@ moranQ /@ {#, d[#]} &] (* Amiram Eldar, Nov 20 2021 *)

A005349 Niven (or Harshad, or harshad) numbers: numbers that are divisible by the sum of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 102, 108, 110, 111, 112, 114, 117, 120, 126, 132, 133, 135, 140, 144, 150, 152, 153, 156, 162, 171, 180, 190, 192, 195, 198, 200, 201, 204
Offset: 1

Views

Author

Keywords

Comments

Both spellings, "Harshad" or "harshad", are in use. It is a Sanskrit word, and in Sanskrit there is no distinction between upper- and lower-case letters. - N. J. A. Sloane, Jan 04 2022
z-Niven numbers are numbers n which are divisible by (A*s(n) + B) where A, B are integers and s(n) is sum of digits of n. Niven numbers have A = 1, B = 0. - Ctibor O. Zizka, Feb 23 2008
A070635(a(n)) = 0. A038186 is a subsequence. - Reinhard Zumkeller, Mar 10 2008
A049445 is a subsequence of this sequence. - Ctibor O. Zizka, Sep 06 2010
Complement of A065877; A188641(a(n)) = 1; A070635(a(n)) = 0. - Reinhard Zumkeller, Apr 07 2011
A001101, the Moran numbers, are a subsequence. - Reinhard Zumkeller, Jun 16 2011
A140866 gives the number of terms <= 10^k. - Robert G. Wilson v, Oct 16 2012
The asymptotic density of this sequence is 0 (Cooper and Kennedy, 1984). - Amiram Eldar, Jul 10 2020
From Amiram Eldar, Oct 02 2023: (Start)
Named "Harshad numbers" by the Indian recreational mathematician Dattatreya Ramchandra Kaprekar (1905-1986) in 1955. The meaning of the word is "giving joy" in Sanskrit.
Named "Niven numbers" by Kennedy et al. (1980) after the Canadian-American mathematician Ivan Morton Niven (1915-1999). During a lecture given at the 5th Annual Miami University Conference on Number Theory in 1977, Niven mentioned a question of finding a number that equals twice the sum of its digits, which appeared in the children's pages of a newspaper. (End)

Examples

			195 is a term of the sequence because it is divisible by 15 (= 1 + 9 + 5).
		

References

  • Paul Dahlenberg and T. Edgar, Consecutive factorial base Niven numbers, Fib. Q., 56:2 (2018), 163-166.
  • D. R. Kaprekar, Multidigital Numbers, Scripta Math., Vol. 21 (1955), p. 27.
  • Robert E. Kennedy and Curtis N. Cooper, On the natural density of the Niven numbers, Abstract 816-11-219, Abstracts Amer. Math. Soc., 6 (1985), 17.
  • Robert E. Kennedy, Terry A. Goodman, and Clarence H. Best, Mathematical Discovery and Niven Numbers, The MATYC Journal, Vol. 14, No. 1 (1980), pp. 21-25.
  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 381.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 171.

Crossrefs

Cf. A001102 (a subsequence).
Cf. A118363 (for factorial-base analog).
Cf. A330927, A154701, A141769, A330928, A330929, A330930 (start of runs of 2, 3, ..., 7 consecutive Niven numbers).

Programs

  • GAP
    Filtered([1..230],n-> n mod List(List([1..n],ListOfDigits),Sum)[n]=0); # Muniru A Asiru
  • Haskell
    a005349 n = a005349_list !! (n-1)
    a005349_list = filter ((== 0) . a070635) [1..]
    -- Reinhard Zumkeller, Aug 17 2011, Apr 07 2011
    
  • Magma
    [n: n in [1..250] | n mod &+Intseq(n) eq 0];  // Bruno Berselli, May 28 2011
    
  • Magma
    [n: n in [1..250] | IsIntegral(n/&+Intseq(n))];  // Bruno Berselli, Feb 09 2016
    
  • Maple
    s:=proc(n) local N:N:=convert(n,base,10):sum(N[j],j=1..nops(N)) end:p:=proc(n) if floor(n/s(n))=n/s(n) then n else fi end: seq(p(n),n=1..210); # Emeric Deutsch
  • Mathematica
    harshadQ[n_] := Mod[n, Plus @@ IntegerDigits@ n] == 0; Select[ Range[1000], harshadQ] (* Alonso del Arte, Aug 04 2004 and modified by Robert G. Wilson v, Oct 16 2012 *)
    Select[Range[300],Divisible[#,Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Sep 07 2015 *)
  • PARI
    is(n)=n%sumdigits(n)==0 \\ Charles R Greathouse IV, Oct 16 2012
    
  • Python
    A005349 = [n for n in range(1,10**6) if not n % sum([int(d) for d in str(n)])] # Chai Wah Wu, Aug 22 2014
    
  • Sage
    [n for n in (1..10^4) if sum(n.digits(base=10)).divides(n)] # Freddy Barrera, Jul 27 2018
    

A085775 Numbers k such that (k / sum of digits of k) and (k+1 / sum of digits of k+1) are both prime.

Original entry on oeis.org

152, 803, 1016, 1853, 3031, 3032, 3438, 7361, 7542, 7587, 8226, 8337, 10095, 10278, 10307, 11354, 11646, 13116, 13117, 13881, 17153, 21434, 21906, 23412, 26221, 28824, 30254, 31112, 32166, 34218, 35513, 38322, 40335, 41058, 44373, 45380
Offset: 1

Views

Author

Jason Earls, Jul 23 2003

Keywords

Examples

			152 is a term since 152/(1+5+2) = 19 and 153/(1+5+3) = 17 are both prime.
		

Crossrefs

Subsequence of A001101 and A330927.

Programs

  • Mathematica
    moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; Select[Range[50000], moranQ[#] && moranQ[#+1] &] (* Amiram Eldar, Apr 25 2020 *)

Extensions

Offset corrected by Amiram Eldar, Apr 25 2020

A235397 The first term of the least sequence of n consecutive Moran numbers.

Original entry on oeis.org

18, 152, 3031, 21481224, 25502420, 4007565001480, 2196125475223740, 905295493763807066010
Offset: 1

Views

Author

Carlos Rivera, Jan 09 2014

Keywords

Comments

A number n is a Moran number if n divided by the sum of its decimal digits is prime.
From Amiram Eldar, Apr 25 2020: (Start)
Jens Kruse Andersen found that a(7) <= 2196125475223740 and a(8) <= 905295493763807066010 (see Rivera link).
Since Moran numbers (A001101) are also Niven numbers (A005349), this sequence is finite with no more than 20 terms (see A060159). (End)
a(9) <= 270140199032572375590810. - Giovanni Resta, Apr 30 2020

Examples

			a(6) = 4007565001480 because
4007565001480 = 40 * 100189125037,
4007565001481 = 41 * 97745487841,
4007565001482 = 42 * 95418214321,
4007565001483 = 43 * 93199186081,
4007565001484 = 44 * 91081022761,
4007565001485 = 45 * 89057000033.
		

Crossrefs

Programs

  • PARI
    isA001101(n)=(k->denominator(k)==1&&isprime(k))(n/sumdigits(n))
    a(n)=my(k=n); while(1, forstep(i=k,k-n+1,-1, if(!isA001101(i), k=i+n; next(2))); return(k-n+1)) \\ Charles R Greathouse IV, Jan 10 2014

Extensions

a(7)-a(8) from Giovanni Resta, Apr 27 2020
Showing 1-10 of 20 results. Next