A001131 Number of red-black rooted trees with n-1 internal nodes.
0, 1, 2, 2, 3, 8, 14, 20, 35, 64, 122, 260, 586, 1296, 2708, 5400, 10468, 19888, 37580, 71960, 140612, 279264, 560544, 1133760, 2310316, 4750368, 9876264, 20788880, 44282696, 95241664, 206150208, 447470464, 970862029, 2100029344
Offset: 0
Keywords
Links
- F. Ruskey, Information on Red-Black Trees
- Eric Weisstein's World of Mathematics, Red-Black Tree.
- Index entries for sequences related to rooted trees
Programs
-
Maple
spec := [B, {B=Union(Z, Subst(M, B)), M=Union(Prod(Z,Z),Prod(Z,Z,Z,Z))} ]; [seq(combstruct[count](spec, size=2*n), n=0..40)]; # N. J. A. Sloane, Dec 21 2000. Compare A014535, A037026. a := proc(n) option remember; if n < 3 then return n fi; add(binomial(2*k, n-2*k)*a(k), k = iquo(n,4)..iquo(n,2)) end: seq(a(n), n=0..33); # Peter Luschny, Oct 23 2019
-
Mathematica
m = 34; A[_] = 0; Do[A[x_] = x + x^2 + A[(x + x^2)^2] + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Oct 23 2019 *)
-
PARI
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+x^2+subst(A,x,(x+x^2)^2+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Jun 14 2012
Formula
a(1) = 1, a(2) = 2 and for n>2: a(n) = Sum_[n/4 <= m <= n/2] binomial(2m,n-2m)*a(m), John Moon, as quoted in Ruskey. - Jonathan Vos Post, Jun 17 2005.
G.f. satisfies: A(x) = x+x^2 + A((x+x^2)^2). - Paul D. Hanna, Jun 14 2012
Comments