cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001131 Number of red-black rooted trees with n-1 internal nodes.

Original entry on oeis.org

0, 1, 2, 2, 3, 8, 14, 20, 35, 64, 122, 260, 586, 1296, 2708, 5400, 10468, 19888, 37580, 71960, 140612, 279264, 560544, 1133760, 2310316, 4750368, 9876264, 20788880, 44282696, 95241664, 206150208, 447470464, 970862029, 2100029344
Offset: 0

Views

Author

Keywords

Comments

Are a(2) = a(3) = 2 and a(4) = 3 the only primes in this sequence? - Jonathan Vos Post, Jun 17 2005

Crossrefs

Programs

  • Maple
    spec := [B, {B=Union(Z, Subst(M, B)), M=Union(Prod(Z,Z),Prod(Z,Z,Z,Z))} ]; [seq(combstruct[count](spec, size=2*n), n=0..40)]; # N. J. A. Sloane, Dec 21 2000. Compare A014535, A037026.
    a := proc(n) option remember; if n < 3 then return n fi; add(binomial(2*k, n-2*k)*a(k), k = iquo(n,4)..iquo(n,2)) end:
    seq(a(n), n=0..33); # Peter Luschny, Oct 23 2019
  • Mathematica
    m = 34; A[_] = 0;
    Do[A[x_] = x + x^2 + A[(x + x^2)^2] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 23 2019 *)
  • PARI
    {a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+x^2+subst(A,x,(x+x^2)^2+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Jun 14 2012

Formula

a(1) = 1, a(2) = 2 and for n>2: a(n) = Sum_[n/4 <= m <= n/2] binomial(2m,n-2m)*a(m), John Moon, as quoted in Ruskey. - Jonathan Vos Post, Jun 17 2005.
G.f. satisfies: A(x) = x+x^2 + A((x+x^2)^2). - Paul D. Hanna, Jun 14 2012