cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001135 Primes p such that the multiplicative order of 2 modulo p is (p-1)/5.

Original entry on oeis.org

251, 571, 971, 1181, 1811, 2011, 2381, 2411, 3221, 3251, 3301, 3821, 4211, 4861, 4931, 5021, 5381, 5861, 6221, 6571, 6581, 8461, 8501, 9091, 9461, 10061, 10211, 10781, 11251, 11701, 11941, 12541, 13171, 13381, 13421, 13781, 14251, 15541, 16091, 16141, 16451, 16661, 16691, 16811, 17291
Offset: 1

Views

Author

Keywords

References

  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(15541) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,5) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
    
  • Maple
    q:= p-> isprime(p) and numtheory[order](2, p)=(p-1)/5:
    select(q, [$2..20000])[];  # Alois P. Heinz, Dec 12 2023
  • Mathematica
    Reap[For[p = 2, p <= 18000, p = NextPrime[p], If[ MultiplicativeOrder[2, p] == (p-1)/5, Sow[p]]]][[2, 1]] (* James C. McMahon, Dec 12 2023 *)
  • PARI
    forprime(p=3,10^5,if(znorder(Mod(2,p))==(p-1)/5,print1(p,", "))); \\ Joerg Arndt, May 17 2013

Extensions

More terms and better definition from Don Reble, Mar 11 2006