A001178 Fibonacci frequency of n.
0, 4, 3, 2, 3, 1, 2, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 1, 2, 2, 2, 2, 2, 0, 3, 3, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 3, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 1, 3, 2, 2, 3, 3, 2, 3, 2, 2, 3, 4, 1, 2, 2, 2, 3, 3, 1, 3, 2, 2
Offset: 1
Keywords
References
- B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers. Report ORNL-4261, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Jun 1968. [There is a typo in the value of a(24) given in the table on the last page.]
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- D. Fulton and W. L. Morris, On arithmetical functions related to the Fibonacci numbers, Acta Arithmetica, 16 (1969), 105-110.
- B. H. Hannon and W. L. Morris, Tables of Arithmetical Functions Related to the Fibonacci Numbers [Annotated and scanned copy]
- Wikipedia, Pisano period
Programs
-
Haskell
a001178 = f 0 where f j x = if x == y then j else f (j + 1) y where y = a001175 x -- Reinhard Zumkeller, Jan 15 2014
-
Mathematica
pi[1] = 1; pi[n_] := For[k = 1, True, k++, If[Mod[Fibonacci[k], n] == 0 && Mod[ Fibonacci[k+1], n] == 1, Return[k]]]; a[n_] := Length[FixedPointList[pi, n]] - 2; a /@ Range[100] (* Jean-François Alcover, Oct 28 2019 *)
-
Python
from itertools import count def A001178(n): # uses function from A001175 m = n for c in count(0): k = A001175(m) if k == m: return c m = k # Chai Wah Wu, Feb 28 2022
Formula
See a comment above and the program.
Extensions
a(24) corrected by Reinhard Zumkeller, Jan 15 2014
Comments