A001235 Taxi-cab numbers: sums of 2 cubes in more than 1 way.
1729, 4104, 13832, 20683, 32832, 39312, 40033, 46683, 64232, 65728, 110656, 110808, 134379, 149389, 165464, 171288, 195841, 216027, 216125, 262656, 314496, 320264, 327763, 373464, 402597, 439101, 443889, 513000, 513856, 515375, 525824, 558441, 593047, 684019, 704977
Offset: 1
Examples
4104 belongs to the sequence as 4104 = 2^3 + 16^3 = 9^3 + 15^3.
References
- R. K. Guy, Unsolved Problems in Number Theory, Section D1.
- G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940, p. 12.
- Ya. I. Perelman, Algebra can be fun, pp. 142-143.
- H. W. Richmond, On integers which satisfy the equation t^3 +- x^3 +- y^3 +- z^3, Trans. Camb. Phil. Soc., 22 (1920), 389-403, see p. 402.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 165.
Links
- Shahar Amitai, Table of n, a(n) for n = 1..30000 (terms a(1)-a(4724) from T. D. Noe, terms a(4725)-a(10000) from Zak Seidov).
- Shahar Amitai, Python code to generate all taxicab numbers up to N.
- J. Charles-É, Recreomath, Ramanujan's Number.
- A. Grinstein, Ramanujan and 1729, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
- Henk Koppelaar, Peyman Nasehpour, and Maarten Looijen, Symmetry between Series if Entangled by Sums, Preprints.org, 2024.
- Istanbul Bilgi University, Ramanujan and Hardy's Taxi
- Christopher Lane, The First ten Ta(2) and their double distinct cubic sums representations, Find Ramanujan's Taxi Number using JavaScript. [WayBack Machine copy]
- J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
- J. Loy, The Hardy-Ramanujan Number.
- Mia Muessig, Julia code for finding general taxicab numbers
- Ken Ono and Sarah Trebat-Leder, The 1729 K3 surface, arXiv:1510.00735 [math.NT], 2015.
- Eric Weisstein's World of Mathematics, Cubic Number
- Eric Weisstein's World of Mathematics, Diophantine Equation 3rd Powers
- Eric Weisstein's World of Mathematics, Taxicab Number
- D. W. Wilson, The Fifth Taxicab Number is 48988659276962496, J. Integer Sequences, Vol. 2, 1999, #99.1.9.
Crossrefs
Programs
-
Mathematica
Select[Range[750000],Length[PowersRepresentations[#,2,3]]>1&] (* Harvey P. Dale, Nov 25 2014, with correction by Zak Seidov, Jul 13 2015 *)
-
PARI
is(n)=my(t);for(k=ceil((n/2)^(1/3)),(n-.4)^(1/3),if(ispower(n-k^3,3),if(t,return(1),t=1)));0 \\ Charles R Greathouse IV, Jul 15 2011
-
PARI
T=thueinit(x^3+1,1); is(n)=my(v=thue(T,n)); sum(i=1,#v,v[i][1]>=0 && v[i][2]>=v[i][1])>1 \\ Charles R Greathouse IV, May 09 2016
Comments