cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A025465 Number of partitions of n into 3 distinct nonnegative cubes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

In other words, number of solutions to the equation n = x^3 + y^3 + z^3 with x > y > z >= 0. - Antti Karttunen, Aug 29 2017

Examples

			From _Antti Karttunen_, Aug 29 2017: (Start)
For n = 9 there is one solution: 9 = 2^3 + 1^3 + 0^3, thus a(9) = 1.
For n = 855 there are two solutions: 855 = 9^3 + 5^3 + 1^3 = 8^3 + 7^3 + 0^3, thus a(855) = 2. This is also the first point where sequence attains value greater than one.
(End)
From _Harvey P. Dale_, Sep 30 2018: (Start)
In addition to 855, the following numbers attain the value of 2: 1009, 1072, 1366, 1457, and there are 73 more such numbers less than 10000.
The first two numbers to attain the value of 3 are 5104 and 9729.
There are no numbers up to 10000 that attain a value greater than 3.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[FindInstance[{n==x^3+y^3+z^3,x>y>z>=0},{x,y,z},Integers,5]],{n,0,110}] (* Harvey P. Dale, Sep 30 2018 *)
  • PARI
    A025465(n) = { my(s=0); for(x=0,n,if(ispower(x,3),for(y=x+1,n-x,if(ispower(y,3),for(z=y+1,n-(x+y),if((ispower(z,3)&&(x+y+z)==n),s++)))))); (s); }; \\ Antti Karttunen, Aug 29 2017

Formula

a(n) = A025468(n) + A025469(n).

A003998 Numbers that are a sum of distinct positive cubes in more than one way.

Original entry on oeis.org

216, 217, 224, 225, 540, 559, 560, 567, 568, 728, 729, 736, 737, 756, 757, 764, 793, 801, 820, 828, 854, 855, 862, 863, 881, 882, 889, 890, 918, 919, 926, 927, 945, 946, 953, 954, 980, 981, 1008, 1009, 1036, 1044, 1045, 1071, 1072, 1073, 1079, 1080
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A001239.

Programs

  • Maple
    F:= proc(x,y) option remember;
      if y = 0 then 1
      elif y < x^3 then 0
      elif y = x^3 then 1
      else procname(x+1,y) + procname(x+1,y-x^3)
      fi
    end proc:
    select(t -> F(1,t) > 1, [$1..10000]); # Robert Israel, Dec 31 2015
  • Mathematica
    ok[n_] := Length[ Select[ Union[ Union /@ Flatten[ Table[ DeleteCases[ PowersRepresentations[n, k, 3], 0, 2], {k, 1, Floor[(n-1)^(1/3)]}], 1]], Total[#^3] == n & , 2]] == 2; Reap[ Do[ If[ ok[n], Print[n]; Sow[n]], {n, 1, 1100}]][[2, 1]](* Jean-François Alcover, Feb 23 2012 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000

A219329 Numbers that can be expressed as the sum of three nonnegative cubes in three ways.

Original entry on oeis.org

5104, 5832, 9288, 9729, 10261, 10773, 12104, 12221, 12384, 14175, 17604, 17928, 19034, 20691, 21412, 21888, 24416, 24480, 28792, 29457, 30528, 31221, 32850, 34497, 35216, 36288, 38259, 39339, 39376, 39528, 40060, 40097, 40832, 40851, 41033, 41040, 41364
Offset: 1

Views

Author

Keywords

Comments

Index of A051343 = 9, superset of index of A025456 = 3.
Subset of A001239.

Examples

			a(1) = 5104 = 1^3+12^3+15^3 = 2^3+10^3+16^3 = 9^3+10^3+15^3.
		

Crossrefs

Other sums of cubes: A025402, A025398, A024974, A001239, A008917.
Cf. A025396.

Programs

  • Mathematica
    Select[Range[42000],Length[PowersRepresentations[#,3,3]]==3&] (* Harvey P. Dale, Sep 28 2016 *)
Showing 1-3 of 3 results.