cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001260 Number of permutations of length n with 4 consecutive ascending pairs.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 45, 385, 3710, 38934, 444990, 5506710, 73422855, 1049946755, 16035550531, 260577696015, 4489954146860, 81781307674780, 1570201107355980, 31698434854748604, 671260973394676605, 14879618243581997745
Offset: 1

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal in triangle A010027.

Programs

  • Maple
    a:=n->sum((n+2)!*sum((-1)^k/k!/4!, j=1..n), k=0..n): seq(a(n), n=2..19); # Zerinvary Lajos, May 25 2007
    series(hypergeom([2, 5],[],x/(x+1))/(x+1)^5,x=0,30); # Mark van Hoeij, Nov 07 2011
  • Mathematica
    Drop[CoefficientList[Series[x^4/4! Exp[-x]/(1 - x)^2, {x, 0, 20}], x] Range[0, 20]!, 4] (* Vaclav Kotesovec, Mar 26 2014 *)

Formula

(n-1)*a(n) = (n+3)*(a(n-1)*n + a(n-2)*n - a(n-1) + 2*a(n-2)).
E.g.f.: (for offset 4): (x^4/4!)*exp(-x)/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
G.f.: (for offset 0): hypergeom([2, 5],[],x/(x+1))/(x+1)^5. - Mark van Hoeij, Nov 07 2011
Recurrence (for offset 5): (n-5)*a(n) = (n-5)*(n-1)*a(n-1) + (n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Mar 26 2014
a(n) ~ n! * exp(-1)/24. - Vaclav Kotesovec, Mar 26 2014

Extensions

More terms from Vladeta Jovovic, Jan 03 2003
Name clarified and offset changed by N. J. A. Sloane, Apr 12 2014