A182086 Number of ways of making change for n Pfennig using Deutschmark coins.
1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40, 43, 49, 52, 58, 64, 70, 76, 82, 88, 98, 104, 114, 120, 130, 140, 150, 160, 170, 180, 195, 205, 220, 230, 245, 260, 275, 290, 305, 320, 342, 357, 379, 394, 416, 438, 460, 482, 504, 526
Offset: 0
Keywords
Examples
Number of partitions of coin values into coin values: a(1) = #{1} = 1; a(2) = #{2, 1+1} = 2; a(5) = #{5, 2+2+1, 2+1+1+1, 1+1+1+1+1} = 4; a(10) = #{10, 5+5, 5+2+2+1, 5+2+1+1+1, 5+5x1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 11; a(50) = #{50,10+10+10+10+10, 10+10+10+10+5+5, 10+10+10+10+5+2+2+1, 10+10+10+10+5+2+1+1+1, 10+10+10+10+5+10x1, ...} = 342; a(100) = 2499; a(200) = 26905; a(500) = 1229587.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Deutsche Bundesbank, Umlaufmuenzen
- Wikipedia, Deutsche Mark, Coins
- Index entries for sequences related to making change.
- Index entries for linear recurrences with constant coefficients, order 868.
Programs
-
Haskell
a182086 = p [1,2,5,10,50,100,200,500] where p 0 = 1; p [] = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-
Mathematica
CoefficientList[Series[1/((1 - x)*(1 - x^2)*(1 - x^5)*(1 - x^10)*(1 - x^50)*(1 - x^100)*(1 - x^200)*(1 - x^500)), {x, 0, 50}], x] (* G. C. Greubel, Aug 20 2017 *)
-
PARI
Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)*(1-x^200)*(1-x^500))+O(x^566)) \\ Joerg Arndt, Jul 08 2013
Formula
G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)*(1-x^200)*(1-x^500)). - Joerg Arndt, Jul 08 2013
Comments