A001384 Number of n-node trees of height at most 4.
1, 1, 1, 2, 4, 9, 19, 42, 89, 191, 402, 847, 1763, 3667, 7564, 15564, 31851, 64987, 132031, 267471, 539949, 1087004, 2181796, 4367927, 8721533, 17372967, 34524291, 68456755, 135446896, 267444085, 527027186, 1036591718, 2035083599
Offset: 0
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n=0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 63
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- N. J. A. Sloane, Transforms
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Crossrefs
See A001383 for details.
Programs
-
Maple
For Maple program see link in A000235. with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: A000041:= etr(n->1): b1:= etr(k-> A000041(k-1)): A001383:= n->`if`(n=0,1,b1(n-1)): b2:= etr(A001383): a:= n->`if`(n=0,1,b2(n-1)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
Mathematica
Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]],{i,1,Length[#]}],{x,0,40}],x]&,{1},4],1] (* Geoffrey Critzer, Aug 01 2013 *)
Formula
Take Euler transform of A001383 and shift right. (Christian G. Bower)
Comments