cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001385 Number of n-node trees of height at most 5.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 20, 47, 108, 252, 582, 1345, 3086, 7072, 16121, 36667, 83099, 187885, 423610, 953033, 2139158, 4792126, 10714105, 23911794, 53273599, 118497834, 263164833, 583582570, 1292276355, 2857691087, 6311058671, 13919982308, 30664998056, 67473574130
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is also the number of n-vertex graphs that do not contain a P_4, C_4, or K_6 as induced subgraph (K_6-free trivially perfect graphs, cf. A123467). - Falk Hüffner, Jan 10 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A001383 for details.

Programs

  • Maple
    For Maple program see link in A000235.
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: shr:= proc(p) n->`if`(n=0, 1,p(n-1)) end: b[0]:= etr(n->1): for j from 1 to 3 do b[j]:= etr(shr(b[j-1])) od: a:= shr(b[3]): seq(a(n), n=0..35); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    Prepend[Nest[CoefficientList[Series[Product[1/(1-x^i)^#[[i]],{i,1,Length[#]}],{x,0,40}],x]&,{1},5],1] (* Geoffrey Critzer, Aug 01 2013 *)

Formula

Take Euler transform of A001384 and shift right. (Christian G. Bower)