cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001422 Numbers which are not the sum of distinct squares.

Original entry on oeis.org

2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128
Offset: 1

Views

Author

N. J. A. Sloane, Jeff Adams (jeff.adams(AT)byu.net)

Keywords

Comments

This is the complete list (Sprague).

References

  • S. Lin, Computer experiments on sequences which form integral bases, pp. 365-370 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • Harry L. Nelson, The Partition Problem, J. Rec. Math., 20 (1988), 315-316.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 222.

Crossrefs

Complement of A003995. Subsequence of A004441.
Cf. A025524 (number of numbers not the sum of distinct n-th-order polygonal numbers)
Cf. A007419 (largest number not the sum of distinct n-th-order polygonal numbers)
Cf. A053614, A121405 (corresponding sequences for triangular and pentagonal numbers)
Cf. A001476, A046039, A194768, A194769 for 3rd, 4th, 5th, 6th powers.
Cf. A001661.

Programs

  • Mathematica
    nn=50; t=Rest[CoefficientList[Series[Product[(1+x^(k*k)), {k,nn}], {x,0,nn*nn}], x]]; Flatten[Position[t,0]] (* T. D. Noe, Jul 24 2006 *)
  • PARI
    select( is_A001422(n,m=n)={m^2>n&& m=sqrtint(n); n!=m^2&&!while(m>1,isSumOfSquares(n-m^2,m--)&&return)}, [1..128]) \\ M. F. Hasler, Apr 21 2020