cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001433 Number of graphs with n nodes and n-1 edges.

Original entry on oeis.org

1, 1, 1, 3, 6, 15, 41, 115, 345, 1103, 3664, 12763, 46415, 175652, 691001, 2821116, 11932174, 52211412, 236007973, 1100528508, 5287050500, 26134330813, 132760735671, 692294900849, 3701754158688, 20275893222445, 113657560920970, 651449039159673, 3814790900995022, 22805438484189851
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008406.

Programs

  • Mathematica
    Needs["Combinatorica`"]
    Table[ NumberOfGraphs[n, n-1], {n, 1, 25}] (* Robert G. Wilson v *)
    (* Second program (not needing Combinatorica): *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[Product[g = GCD[v[[i]], v[[j]]]; t[v[[i]]* v[[j]]/g]^g, {j, 1, i - 1}], {i, 2, Length[v]}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    a[n_] := a[n] = Module[{s = 0}, Do[s += permcount[p]*edges[p, 1 + x^# &], {p, IntegerPartitions[n]}]; s/n!] // Expand // SeriesCoefficient[#, {x, 0, n-1}]&;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 35}] (* Jean-François Alcover, Aug 18 2022, after Andrew Howroyd in A008406 *)

Extensions

More terms from Vladeta Jovovic, Jan 15 2000