cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001454 Number of permutations of length n with longest increasing subsequence of length 3.

Original entry on oeis.org

1, 9, 61, 381, 2332, 14337, 89497, 569794, 3704504, 24584693, 166335677, 1145533650, 8017098273, 56928364553, 409558170361, 2981386305018, 21935294881644, 162951791097669, 1221201051018189, 9225637750090023, 70209505971502533, 537934326588404973
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001453. Column k=3 of A047874.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 0, `if`(n=3, 1,
          (18*(n-1)*(2*n-5)*(3*n^2+2*n-3)*(n-2)^2*a(n-3)
          -(n-1)*(147*n^5-553*n^4+199*n^3+937*n^2-790*n+96)*a(n-2)
          +(n+1)*(42*n^5-146*n^4+21*n^3+171*n^2+14*n-48)*a(n-1))/
           ((n-3)*(n+1)*(3*n^2-4*n-2)*(n+2)^2)))
        end:
    seq(a(n), n=3..30);  # Alois P. Heinz, Sep 28 2012
  • Mathematica
    h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, n}]; Table[T[n], {n, 3, 24}][[All, 3]] (* Jean-François Alcover, Mar 11 2014, after Alois P. Heinz *)

Formula

a(n) ~ 3^(2*n + 4 + 1/2)/(16*Pi*n^4). - Vaclav Kotesovec, Aug 16 2013

Extensions

More terms from Pab Ter (pabrlos2(AT)hotmail.com), Oct 17 2005