cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001453 Catalan numbers - 1.

Original entry on oeis.org

1, 4, 13, 41, 131, 428, 1429, 4861, 16795, 58785, 208011, 742899, 2674439, 9694844, 35357669, 129644789, 477638699, 1767263189, 6564120419, 24466267019, 91482563639, 343059613649, 1289904147323, 4861946401451, 18367353072151, 69533550916003, 263747951750359
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A001454. Column k=2 of A047874.
A141364 is essentially the same sequence.
All of A000108, A001453, A246604, A273526, A120304, A289615, A289616, A289652, A289653, A289654 are very similar sequences.

Programs

Formula

a(n) = A000108(n) - 1 = binomial(2*n,n)/(n+1) - 1.
D-finite with recurrence: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(9*n-13)*a(n-2) +2*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Sep 04 2013
a(n) = Sum_{k=1..floor(n/2)} (C(n,k)-C(n,k-1))^2. - J. M. Bergot, Sep 17 2013
a(n) = Sum_{k=1..n-1} A000245(n-k-1). - John M. Campbell, Dec 28 2016
From Ilya Gutkovskiy, Dec 28 2016: (Start)
O.g.f.: (1 - sqrt(1 - 4*x))/(2*x) - 1/(1 - x).
E.g.f.: exp(x)*(exp(x)*(BesselI(0,2*x) - BesselI(1,2*x)) - 1). (End)
a(n)= 3*Sum_{k=1..n} binomial(2*k-2,k)/(k+1). - Gary Detlefs, Feb 14 2020

Extensions

More terms from James Sellers, Sep 08 2000

A047874 Triangle of numbers T(n,k) = number of permutations of (1,2,...,n) with longest increasing subsequence of length k (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 13, 9, 1, 1, 41, 61, 16, 1, 1, 131, 381, 181, 25, 1, 1, 428, 2332, 1821, 421, 36, 1, 1, 1429, 14337, 17557, 6105, 841, 49, 1, 1, 4861, 89497, 167449, 83029, 16465, 1513, 64, 1, 1, 16795, 569794, 1604098, 1100902, 296326, 38281, 2521, 81, 1
Offset: 1

Views

Author

Eric Rains (rains(AT)caltech.edu)

Keywords

Comments

Mirror image of triangle in A126065.
T(n,m) is also the sum of squares of n!/(product of hook lengths), summed over the partitions of n in exactly m parts (Robinson-Schensted correspondence). - Wouter Meeussen, Sep 16 2010
Table I "Distribution of L_n" on p. 98 of the Pilpel reference. - Joerg Arndt, Apr 13 2013
In general, for column k is a(n) ~ product(j!, j=0..k-1) * k^(2*n+k^2/2) / (2^((k-1)*(k+2)/2) * Pi^((k-1)/2) * n^((k^2-1)/2)) (result due to Regev) . - Vaclav Kotesovec, Mar 18 2014

Examples

			T(3,2) = 4 because 132, 213, 231, 312 have longest increasing subsequences of length 2.
Triangle T(n,k) begins:
  1;
  1,   1;
  1,   4,    1;
  1,  13,    9,    1;
  1,  41,   61,   16,   1;
  1, 131,  381,  181,  25,  1;
  1, 428, 2332, 1821, 421, 36,  1;
  ...
		

Crossrefs

Cf. A047887 and A047888.
Row sums give A000142.
Cf. A047884. - Wouter Meeussen, Sep 16 2010
Cf. A224652 (Table II "Distribution of F_n" on p. 99 of the Pilpel reference).
Cf. A245667.
T(2n,n) gives A267433.
Cf. A003316.

Programs

  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
          +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                    add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    T:= n-> seq(g(n-k, min(n-k, k), [k]), k=1..n):
    seq(T(n), n=1..12);  # Alois P. Heinz, Jul 05 2012
  • Mathematica
    Table[Total[NumberOfTableaux[#]^2&/@ IntegerPartitions[n,{k}]],{n,7},{k,n}] (* Wouter Meeussen, Sep 16 2010, revised Nov 19 2013 *)
    h[l_List] := Module[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i<1, 0, Sum[g[n-i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; T[n_] := Table[g[n-k, Min[n-k, k], {k}], {k, 1, n}]; Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 06 2014, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A003316(n). - Alois P. Heinz, Nov 04 2018

A060213 Lesser of twin primes whose average is 6 times a prime.

Original entry on oeis.org

11, 17, 29, 41, 101, 137, 281, 617, 641, 821, 1697, 1877, 2081, 2237, 2381, 2657, 2801, 3461, 3557, 3917, 4637, 4721, 5441, 6197, 6701, 8537, 8597, 9677, 10937, 12161, 12377, 12821, 12917, 13217, 13721, 13757, 13997, 14081, 16061, 17417
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Lowest factor-density among all positive consecutive integer triples; for p > 41, last digit of p can be only 1 or 7 (see Alexandrov link, p. 15). - Lubomir Alexandrov, Nov 25 2001

Examples

			102197 is here because 102198 = 17033*6 and 17033 is prime.
		

Crossrefs

Programs

  • Maple
    map(t -> 6*t-1, select(p -> isprime(p) and isprime(6*p-1) and isprime(6*p+1), [2,seq(i,i=3..10000,2)]));
  • Mathematica
    Transpose[Select[Partition[Prime[Range[2500]],2,1],#[[2]]-#[[1]] == 2 && PrimeQ[Mean[#]/6]&]][[1]] (* Harvey P. Dale, May 04 2014 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+2) && !((n+1) % 6) && isprime((n+1)/6); \\ Michel Marcus, Dec 14 2013

Formula

a(n) = 6 * A060212(n) - 1. - Sean A. Irvine, Oct 31 2022

Extensions

Offset changed to 1 by Michel Marcus, Dec 14 2013

A060210 Largest prime factor of 1+smaller term of twin primes.

Original entry on oeis.org

2, 3, 3, 3, 5, 7, 5, 3, 17, 3, 23, 5, 5, 3, 11, 19, 5, 5, 47, 13, 29, 7, 3, 11, 29, 19, 5, 103, 107, 11, 5, 137, 23, 13, 7, 17, 43, 7, 59, 13, 3, 41, 71, 43, 31, 11, 17, 11, 19, 31, 67, 5, 139, 283, 41, 149, 13, 313, 23, 13, 37, 13, 347, 29, 11, 71, 17, 373, 7, 11, 13, 397, 17
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Also: Largest prime factor of the average, or the sum, of twin prime pairs. - M. F. Hasler, Jan 03 2011

Examples

			101 is the 9th lesser twin, 102 = 2*3*17, and its max p factor is 17=a(9).
		

Crossrefs

Programs

  • Mathematica
    FactorInteger[1+#][[-1,1]]&/@Select[Partition[Prime[Range[500]],2,1], #[[2]]- #[[1]]==2&][[All,1]] (* Harvey P. Dale, Jan 16 2017 *)
  • PARI
    p=3; for(n=1,1e3, until(o+2==p,p=nextprime(2+o=p)); print1(vecmax(factor(p-1)[,1])","))  \\ M. F. Hasler, Jan 03 2011

A060211 Larger term of a pair of twin primes such that the prime factors of their average are only 2 and 3. Proper subset of A058383.

Original entry on oeis.org

7, 13, 19, 73, 109, 193, 433, 1153, 2593, 139969, 472393, 786433, 995329, 57395629, 63700993, 169869313, 4076863489, 10871635969, 2348273369089, 56358560858113, 79164837199873, 84537841287169, 150289495621633, 578415690713089, 1141260857376769, 57711166318706689
Offset: 1

Views

Author

Labos Elemer, Mar 20 2001

Keywords

Comments

Larger of twin primes p such that p-1 = (2^u)*(3^w), u,w >= 1.

Examples

			a(4) = 73, {71,73} are twin primes and (71 + 73)/2 = 72 = 2*2*2*3*3.
		

Crossrefs

Programs

  • Mathematica
    Take[Select[Sort[Flatten[Table[2^a 3^b,{a,250},{b,250}]]],AllTrue[#+{1,-1},PrimeQ]&]+1,23] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 17 2019 *)
  • PARI
    isok(p) = isprime(p) && isprime(p-2) && (vecmax(factor(p-1)[,1]) == 3); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A027856(n+1) + 1. - Amiram Eldar, Mar 17 2025

Extensions

Name corrected by Sean A. Irvine, Oct 31 2022

A239432 Number of permutations of length n with longest increasing subsequence of length 8.

Original entry on oeis.org

1, 64, 2521, 79861, 2250887, 59367101, 1508071384, 37558353900, 927716186325, 22904111472825, 568209449266202, 14216730315766814, 359666061054003144, 9216708503647774264, 239524408949706575548, 6317740398995612513164, 169207499997274346326579, 4602911809939402715164066
Offset: 8

Views

Author

Vaclav Kotesovec, Mar 18 2014

Keywords

Comments

In general, for column k of A047874 is a(n) ~ product(j!, j=0..k-1) * k^(2*n+k^2/2) / (2^((k-1)*(k+2)/2) * Pi^((k-1)/2) * n^((k^2-1)/2)) [Regev, 1981].

Crossrefs

Formula

a(n) ~ 1913625 * 2^(6*n+77) / (Pi^(7/2) * n^(63/2)).
Showing 1-6 of 6 results.