cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001479 Let p = A007645(n) be the n-th generalized cuban prime and write p = x^2 + 3*y^2; a(n) = x.

Original entry on oeis.org

0, 2, 1, 4, 2, 5, 4, 7, 8, 5, 2, 7, 10, 1, 10, 8, 2, 7, 4, 13, 1, 14, 8, 14, 11, 7, 14, 13, 16, 8, 11, 16, 17, 7, 2, 19, 4, 17, 19, 11, 1, 14, 5, 10, 22, 16, 4, 23, 20, 8, 23, 13, 10, 5, 16, 22, 20, 19, 25, 4, 11, 22, 25, 8, 26, 13, 1, 28, 28, 26, 23, 29, 28
Offset: 1

Views

Author

Keywords

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. van der Pol and P. Speziali, The primes in k(rho). Nederl. Akad. Wetensch. Proc. Ser. A. {54} = Indagationes Math. 13, (1951). 9-15 (1 plate).

Crossrefs

Programs

  • Haskell
    a001479 n = a000196 $ head $
       filter ((== 1) . a010052) $ map (a007645 n -) $ tail a033428_list
    -- Reinhard Zumkeller, Jul 11 2013
    
  • Mathematica
    nmax = 56; nextCuban[p_] := If[p1 = NextPrime[p]; Mod[p1, 3] > 1, nextCuban[p1], p1]; cubanPrimes = NestList[ nextCuban, 3, nmax ]; f[p_] := x /. ToRules[ Reduce[x > 0 && y > 0 && p == x^2 + 3*y^2, {x, y}, Integers]]; a[1] = 0; a[n_] := f[cubanPrimes[[n]]]; Table[ a[n] , {n, 1, nmax}] (* Jean-François Alcover, Oct 19 2011 *)
  • PARI
    do(lim)=my(v=List(), q=Qfb(1,0,3)); forprime(p=2,lim, if(p%3==2,next); listput(v, qfbsolve(q,p)[1])); Vec(v) \\ Charles R Greathouse IV, Feb 07 2017

Extensions

Definition revised by N. J. A. Sloane, Jan 29 2013