A001489 a(n) = -n.
0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, -51, -52, -53, -54, -55, -56, -57, -58, -59, -60, -61, -62, -63, -64, -65
Offset: 0
Examples
G.f. = -x - 2*x^2 - 3*x^3 - 4*x^4 - 5*x^5 - 6*x^6 - 7*x^7 - ... - _Michael Somos_, Aug 04 2018
Links
- David Wasserman, Table of n, a(n) for n = 0..1000
- D. Dumont and J. Zeng, Polynomes d'Euler et les fractions continues de Stieltjes-Rogers, Ramanujan J. 2 (1998) 3, 387-410.
- Tanya Khovanova, Recursive Sequences
- A. Randrianarivony and J. Zeng, Une famille de polynomes qui interpole plusieurs suites classiques de nombres, Adv. Appl. Math. 17 (1996), 1-26.
- J. Zeng, Sur quelques propriétés de symétrie des nombres de Genocchi, Discr. Math. 153 (1996) 319-333.
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Partial sums of A057428.
Programs
-
Maple
A001489 := n->-n; [ seq(-n,n=0..100) ];
-
Mathematica
Table[ -n, {n, 0, 50}] (* Stefan Steinerberger, Apr 01 2006 *)
-
PARI
a(n)=-n \\ Charles R Greathouse IV, Jun 04 2013
-
Python
def A001489(n): return -n # Chai Wah Wu, Nov 14 2022
Formula
Extensions
Edited by M. F. Hasler, Jan 18 2015
Comments