cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001513 a(n) = (6*n+1)*(6*n+5).

Original entry on oeis.org

5, 77, 221, 437, 725, 1085, 1517, 2021, 2597, 3245, 3965, 4757, 5621, 6557, 7565, 8645, 9797, 11021, 12317, 13685, 15125, 16637, 18221, 19877, 21605, 23405, 25277, 27221, 29237, 31325, 33485, 35717, 38021, 40397, 42845, 45365, 47957, 50621, 53357, 56165, 59045
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

Sum_{k>=0} 1/a(k) = Pi/(8*sqrt(3)) = 0.22672492... - Jaume Oliver Lafont, May 30 2010
a(n) = 72*n + a(n-1) with a(0)=5. - Vincenzo Librandi, Nov 12 2010
G.f.: (-5 - 62*x - 5*x^2) / (x-1)^3. - R. J. Mathar, Jan 19 2013
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A016921(n)*A016969(n).
Sum_{n>=0} (-1)^n/a(n) = log(2+sqrt(3))/(4*sqrt(3)).
Product_{n>=0} (1 - 1/a(n)) = 2*cos(sqrt(5)*Pi/6).
Product_{n>=0} (1 + 1/a(n)) = 2*cos(sqrt(3)*Pi/6). (End)