cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001534 a(n) = (9*n+1)*(9*n+8).

Original entry on oeis.org

8, 170, 494, 980, 1628, 2438, 3410, 4544, 5840, 7298, 8918, 10700, 12644, 14750, 17018, 19448, 22040, 24794, 27710, 30788, 34028, 37430, 40994, 44720, 48608, 52658, 56870, 61244, 65780, 70478, 75338, 80360, 85544, 90890, 96398, 102068, 107900, 113894, 120050
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_]:=Module[{n9=9n},(n9+1)(n9+8)];Array[f,40,0] (* or *) LinearRecurrence[ {3,-3,1},{8,170,494},50] (* Harvey P. Dale, Aug 20 2011 *)
  • PARI
    a(n)=(9*n+1)*(9*n+8) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 162*n + a(n-1) with a(0)=8. - Vincenzo Librandi, Nov 12 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0)=8, a(1)=170, a(2)=494. - Harvey P. Dale, Aug 20 2011
G.f.: -((2*(x*(4*x+73)+4))/(x-1)^3). - Harvey P. Dale, Aug 20 2011
Sum_{n>=0} 1/a(n) = (Psi(8/9)-Psi(1/9))/63 = 0.13700722.. - R. J. Mathar, May 30 2022
Sum_{n>=0} 1/a(n) = cot(Pi/9)*Pi/63. - Amiram Eldar, Sep 10 2022
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017173(n)*A017257(n).
Product_{n>=0} (1 - 1/a(n)) = cosec(Pi/9)*cos(sqrt(53)*Pi/18).
Product_{n>=0} (1 + 1/a(n)) = cosec(Pi/9)*cos(sqrt(5)*Pi/6). (End)
E.g.f.: exp(x)*(8 + 81*x*(2 + x)). - Elmo R. Oliveira, Oct 18 2024