A000722
Number of invertible Boolean functions of n variables: a(n) = (2^n)!.
Original entry on oeis.org
1, 2, 24, 40320, 20922789888000, 263130836933693530167218012160000000, 126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Delbert L. Johnson, Table of n, a(n) for n = 0..8
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
- Index entries for sequences related to Boolean functions
-
a[n_] := Factorial[2^n]; Table[a[n],{n,0,6}] (* James C. McMahon, Dec 06 2023 *)
-
atonfact(a,n) = {sr=0; for(x=1,n, y =(a^x)!; sr+=1.0/y; print1(y" "); ); print(); print(sr) }
A000652
Invertible Boolean functions of n variables.
Original entry on oeis.org
1, 1, 6, 924, 81738720000, 256963707943061374889193111552000, 30978254928194376001814792318154658399138184007229852126545533479881553257431040000000
Offset: 0
- M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 154, problem 12.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- Index entries for sequences related to Boolean functions
A001038
Invertible Boolean functions with GL(n,2) acting on the domain and range.
Original entry on oeis.org
2, 2, 10, 52246, 2631645209645100680144, 312242081385925594286511113384607360432260178128338777217975928751832
Offset: 1
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
- Qing-bin Luo, Jin-zhao Wu, Chen Lin, Computing the Number of the Equivalence Classes for Reversible Logic Functions, Int'l J. of Theor. Phys. (2020) Vol. 59, 2384-2396.
- Index entries for sequences related to Boolean functions
A128904
Number of AGL(n,2), AGL(n,2) double cosets in S(F_2^n).
Original entry on oeis.org
1, 1, 4, 302, 2569966041123938084
Offset: 1
Marcus Brinkmann (marcus.brinkmann(AT)rub.de), Apr 11 2007
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- Xiang-dong Hou (xhou(AT)euler.math.wright.edu), Affinity of Permutations of F_2^n, Proc. of the Workshop on Coding and Cryptography, pages 273-280, 2003
Showing 1-4 of 4 results.
Comments