cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001538 a(n) = (12*n+1)*(12*n+11).

Original entry on oeis.org

11, 299, 875, 1739, 2891, 4331, 6059, 8075, 10379, 12971, 15851, 19019, 22475, 26219, 30251, 34571, 39179, 44075, 49259, 54731, 60491, 66539, 72875, 79499, 86411, 93611, 101099, 108875, 116939, 125291, 133931, 142859, 152075, 161579, 171371, 181451, 191819
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(12n+1)(12n+11),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{11,299,875},40] (* Harvey P. Dale, Jul 22 2024 *)
  • PARI
    a(n)=(12*n+1)*(12*n+11) \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = (9*A001533(n) - 19)/4.
a(n) = 288*n + a(n-1) with a(0)=11. - Vincenzo Librandi, Nov 12 2010
G.f.: -(11 + 266*x + 11*x^2)/(x-1)^3. - R. J. Mathar, Jun 30 2020
From Amiram Eldar, Feb 20 2023: (Start)
a(n) = A017533(n)*A017653(n).
Sum_{n>=0} 1/a(n) = (sqrt(3)+2)*Pi/120.
Sum_{n>=0} (-1)^n/a(n) = (4*log(sqrt(2)+1) + sqrt(3)*log(5+2*sqrt(6)))/(60*sqrt(2)).
Product_{n>=0} (1 - 1/a(n)) = (2*sqrt(2)/(sqrt(3)-1))*cos(sqrt(13/2)*Pi/6).
Product_{n>=0} (1 + 1/a(n)) = 2*sqrt(2+sqrt(3))*cos(Pi/sqrt(6)). (End)
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(11 + 144*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)