cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001568 Related to 3-line Latin rectangles.

Original entry on oeis.org

1, -1, -1, 2, 49, 629, 6961, 38366, -1899687, -133065253, -6482111309, -281940658286, -10702380933551, -247708227641863, 14512103549430397, 3377044611825908414, 433180638973276282801, 47474992085447610990231
Offset: 1

Views

Author

Keywords

References

  • S. M. Kerawala, The asymptotic number of three-deep Latin rectangles, Bull. Calcutta Math. Soc., 39 (1947), 71-72.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Sage
    def A001568(N):
        a = polygen(QQ, 'a')
        R = PowerSeriesRing(a.parent(), 't', default_prec=N + 2)
        t = R.gen()
        n = 1 / t
        dico = {0: 1}
        for k in range(1, N + 1):
            U = sum(di * t**i / factorial(i) for i, di in dico.items())
            U += a * t**k / factorial(k)
            U = U.O(k + 2)
            delta = -U+(n-1)*(n**2-2*n+2)/n**2/(n-2)*U(t=1/(n-1))+(n**2-2*n+2)/n**2/(n-1)*U(t=1/(n-2))+(n**2-2*n-2)/n**2/(n-1)/(n-2)**2*U(t=1/(n-3))+2*(n*n-5*n+3)/n**2/(n-1)/(n-2)**2/(n-3)*U(t=1/(n-4))-4/n**2/(n-2)**2/(n-3)/(n-4)*U(t=1/(n-5))
            dico[k] = delta[k + 1].numerator().roots()[0][0]
        return list(dico.values())
    # F. Chapoton, Jan 01 2022

Extensions

Signs added by N. J. A. Sloane, Jul 23 2015
More terms from F. Chapoton, Jan 01 2022