A001583 Artiads: the primes p == 1 (mod 5) for which Fibonacci((p-1)/5) is divisible by p.
211, 281, 421, 461, 521, 691, 881, 991, 1031, 1151, 1511, 1601, 1871, 1951, 2221, 2591, 3001, 3251, 3571, 3851, 4021, 4391, 4441, 4481, 4621, 4651, 4691, 4751, 4871, 5081, 5281, 5381, 5531, 5591, 5641, 5801, 5881, 6011, 6101, 6211, 6271, 6491, 6841
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..24903 (first 1000 terms from T. D. Noe)
- Bob Bastasz, Lyndon words of a second-order recurrence, Fibonacci Quarterly (2020) Vol. 58, No. 5, 25-29.
- E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 1966 118-131.
- E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 1966 118-131 [annotated and corrected scanned copy]
- E. Lehmer, On the quadratic character of the Fibonacci root, Fib. Quart., 4 (1966), 135-138 (annotated scanned copy).
- Michael J. Mossinghoff and Christopher Pinner, Prime power order circulant determinants, arXiv:2205.12439 [math.NT], 2022. See Type 2 primes on p. 3.
- H. W. Lloyd Tanner, On the Binomial Equation x^p-1=0: Quinquisection, Proc. London Math. Soc., 18 (1886-1887), 214-234.
- H. W. Lloyd Tanner, On Complex Primes formed with the Fifth Roots of Unity, Proc. London Math. Soc., 24 (1892-1893), 223-262.
Crossrefs
Programs
-
Haskell
a001583 n = a001583_list !! (n-1) a001583_list = filter (\p -> mod (a000045 $ div (p - 1) 5) p == 0) a030430_list -- Reinhard Zumkeller, Aug 15 2013
-
Mathematica
Select[ Prime[ Range[1000]], Mod[#, 5] == 1 && Divisible[ Fibonacci[(# - 1)/5], #] &] (* Jean-François Alcover, Jun 22 2012 *)
-
PARI
fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2] list(lim)=my(v=List()); forprime(p=11,lim, if(p%5==1 && fibmod(p\5,p)==0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 06 2017
Formula
From A.H.M. Smeets, Nov 15 2023: (Start)
Equals {prime(m): A296240(m) == 0 (mod 5)}.
a(n) ~ prime(20*n). (End)
Extensions
More terms from James Sellers, Jan 25 2000
Edited by N. J. A. Sloane, Apr 01 2016
Comments