cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A382608 Long leg of the unique primitive Pythagorean triple whose inradius is A000045(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

4, 4, 12, 24, 60, 144, 364, 924, 2380, 6160, 16020, 41760, 109044, 285012, 745420, 1950312, 5104012, 13359280, 34969884, 91543980, 239651724, 627394464, 1642504612, 4300075584, 11257651300, 29472763684, 77160454284, 202008299064, 528863957340, 1384582787280
Offset: 1

Views

Author

Keywords

Examples

			Triangle begins:
  n=1:      3,    4,    5;
  n=2:      3,    4,    5;
  n=3:      5,   12,   13;
where this sequence is the middle column.
		

Crossrefs

Cf. A000045 (inradius), A001588 (short leg), A382609 (semiperimeter), A382610 (area).

Programs

  • Mathematica
    a=Table[Fibonacci[n],{n,0,16}];Apply[Join,Map[{2#+1,2#^2+2#,2#^2+2#+1}&,a]]

Formula

a(n) = 2*F(n)*(F(n) + 1) where F(n) = A000045(n).

A124067 Numbers k such that 2*F(k) + 1 is a prime, where F = A000045.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 11, 13, 19, 21, 22, 24, 27, 40, 44, 51, 62, 92, 139, 208, 224, 293, 307, 421, 509, 741, 861, 966, 989, 1046, 1100, 1102, 1109, 1182, 1547, 1766, 1813, 2048, 2720, 2726, 6012, 6790, 7132, 8301, 8699, 10062, 11102, 15827, 23918, 26747, 29389, 37229, 38211, 68726
Offset: 1

Views

Author

Giovanni Teofilatto, Dec 12 2006

Keywords

Crossrefs

Cf. A000045, A001588, A124081 (associated primes).

Programs

  • Magma
    [n: n in [1..1200] | IsPrime(2*Fibonacci(n)+1)]; // Vincenzo Librandi, Aug 13 2013
    
  • Mathematica
    Select[Range[10000], PrimeQ[2 Fibonacci[#] + 1]&] (* Vincenzo Librandi, Aug 13 2013 *)
  • PARI
    isok(n) = isprime(2*fibonacci(n)+1) \\ Michel Marcus, Jun 03 2013
    
  • PARI
    for(n=1,10^9,if(ispseudoprime(2*fibonacci(n)+1),print1(n,", "))); \\ Joerg Arndt, Aug 13 2013

Extensions

Inserted a(1)=1 and extended by Michel Marcus, Jun 03 2013
More terms from Vincenzo Librandi, Aug 13 2013
a(48) from Jorge Coveiro, Sep 05 2022
a(49)-a(55) from Michael S. Branicky, Jun 17 2023

A256007 Numbers k satisfying |k + 1 - 2F| <= 1 for some positive Fibonacci number F.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 14, 15, 16, 24, 25, 26, 40, 41, 42, 66, 67, 68, 108, 109, 110, 176, 177, 178, 286, 287, 288, 464, 465, 466, 752, 753, 754, 1218, 1219, 1220, 1972, 1973, 1974, 3192, 3193, 3194, 5166, 5167, 5168, 8360, 8361, 8362, 13528, 13529
Offset: 0

Views

Author

Clark Kimberling, May 07 2015

Keywords

Comments

For r > 0, define f(n) = floor(n*r) if n is odd and f(n) = floor(n/r) if n is even. Let S(r,n) be the set {n, f(n), f(f(n)), ...} of iterates of f starting with n. Conjecture: if r = (1 + sqrt(5))/2, then S(r,n) is bounded if and only if n is in this sequence.

Examples

			F(1) = F(2) contributes {0,1,2}; F(3) contributes {1,2,3}.
		

Crossrefs

Programs

  • Mathematica
    u = Table[Fibonacci[k], {k, 2, 30}]; Union[2 u - 2, 2 u - 1, 2 u]

Formula

Conjectures from Colin Barker, May 24 2015: (Start)
a(n) = 2*a(n-3)-a(n-9) for n>12.
G.f.: -x*(x^11+x^10+x^9+2*x^8+x^7-x^4-2*x^3-3*x^2-2*x-1) / ((x-1)*(x^2+x+1)*(x^6+x^3-1)).
(End)

A217762 Square array T, read by antidiagonals: T(n,k) = F(n) + 2*F(k) where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

0, 2, 1, 2, 3, 1, 4, 3, 3, 2, 6, 5, 3, 4, 3, 10, 7, 5, 4, 5, 5, 16, 11, 7, 6, 5, 7, 8, 26, 17, 11, 8, 7, 7, 10, 13, 42, 27, 17, 12, 9, 9, 10, 15, 21, 68, 43, 27, 18, 13, 11, 12, 15, 23, 34, 110, 69, 43, 28, 19, 15, 14, 17, 23, 36, 55, 178, 111, 69, 44, 29, 21
Offset: 0

Views

Author

Philippe Deléham, Apr 07 2013

Keywords

Examples

			Square array begins:
...0....2....2....4....6...10...16...26...42...
...1....3....3....5....7...11...17...27...43...
...1....3....3....5....7...11...17...27...43...
...2....4....4....6....8...12...18...28...44...
...3....5....5....7....9...13...19...29...45...
...5....7....7....9...11...15...21...31...47...
...8...10...10...12...14...18...24...34...50...
..13...15...15...17...19...23...29...39...55...
..21...23...23...25...27...31...37...47...63...
..34...36...36...38...40...44...50...60...76...
..55...57...57...59...61...65...71...81...97...
..89...91...91...93...95...99..105..115..131...
.144..146..146..148..150..154..160..170..186...
...
		

Crossrefs

Formula

T(n,0) = A000045(n).
T(1,k) = A001588(k).
T(n,1) = T(n,2) = A157725(n).
T(n,3) = A157727(n).
T(n,n)= A022086(n) = 3*A000045(n).
T(n+1,n) = A000032(n+1) = A000204(n+1).
T(n+2,n) = A000285(n).
T(n+3,n) = A013655(n+1) = A001060(n+1).
T(n+4,n) = A021120(n).
T(n+5,n) = A022088(n+2) = 5*A000045(n+2).
T(n+6,n) = A022097(n+2).
T(n+7,n) = A022122(n+2).
T(n+8,n) = 3*A013655(n+2).
T(n+9,n) = A097657(n+2).
T(n+10,n) = A022118(n+4).
T(n,n+1) = A000045(n+3).
T(n,n+2) = A013655(n+1) = A001060(n+1).
T(n,n+3) = A000032(n+3).
T(n,n+4) = A022095(n+2).
T(n,n+5) = A022120(n+2).
T(n,n+6) = A022136(n+2).
T(n,n+7) = A022098(n+4).
T(n,n+8) = A022380(n+4).
T(n,n+9) = A206419(n+6).
Sum(T(n-k,k), 0<=k<=n) = 3*A000071(n+2).
Showing 1-4 of 4 results.