cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001621 a(n) = n*(n + 1)*(n^2 + n + 2)/4.

Original entry on oeis.org

0, 2, 12, 42, 110, 240, 462, 812, 1332, 2070, 3080, 4422, 6162, 8372, 11130, 14520, 18632, 23562, 29412, 36290, 44310, 53592, 64262, 76452, 90300, 105950, 123552, 143262, 165242, 189660, 216690, 246512, 279312, 315282, 354620, 397530, 444222, 494912, 549822
Offset: 0

Views

Author

Keywords

Comments

Number of integer sequences of length n+1 with sum zero and sum of absolute values 4. - R. H. Hardin, Feb 22 2009
Partial sums of A034262. - Jeremy Gardiner, Jun 23 2013

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[i+i^3, {i, 1, n}]; (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008 *)
    Array[# (# + 1) (#^2 + # + 2)/4 &, 39, 0] (* or *)
    CoefficientList[Series[-2x (x^2 + x + 1)/(x - 1)^5, {x, 0, 38}], x] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 2, 12, 42, 110}, 39] (* Robert G. Wilson v, Aug 05 2018 *)

Formula

Equals 2 * A002817 and (A058919(n-1) - 1)/2.
G.f.: (-2*x*(x^2+x+1))/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
a(n) = A000217(n) * A000124(n). - Torlach Rush, Aug 05 2018
E.g.f.: exp(x)*x*(8 + 16*x + 8*x^2 + x^3)/4. - Stefano Spezia, Oct 08 2022