cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001623 Number of 3 X n reduced (normalized) Latin rectangles.

Original entry on oeis.org

1, 4, 46, 1064, 35792, 1673792, 103443808, 8154999232, 798030483328, 94866122760704, 13460459852344064, 2246551018310998016, 435626600453967929344, 97108406689489312301056, 24658059294992101453262848, 7075100096781964808223653888, 2277710095706779480096994066432, 817555425148510266964075644059648
Offset: 3

Views

Author

Keywords

Comments

A Latin rectangle [L_{n,k}] is called normalized [N_{n,k}] if the first row is (0,1, . . . , n-1), and reduced [R_{n,k}] if the first row is (0,1, . . . , n-1) and the first column is (0,1, . . . , k-1). Then L_{n,k} = n! N_{n,k} = (n! (n-1)! /(n-k)!) R_{n,k}.

Examples

			G.f. = x^3 + 4*x^4 + 46*x^5 + 1064*x^6 + 35792*x^7 + 1673792*x^8 + ...
		

References

  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001009.

Programs

  • Maple
    f:= n-> add(n*factorial(n-3)*factorial(i)*simplify(hypergeom([3*i+3, -n+i], [], 1/2))/(2^(-n+i)*factorial(n-i)),i=0..n):
    map(f, [$3..30]); # Robert Israel, Nov 07 2016
  • Mathematica
    Table[Sum[  n (n - 3)! (-1)^j 2^(n -i-j) i!/(n-i-j)! Binomial[3 i + j + 2, j], {i, 0, n}, {j, 0, n - i} ], {n, 3, 25}] (* Wouter Meeussen, Oct 27 2013 *)
  • PARI
    A001623 = n->n*(n-3)!*sum(i=0,n,sum(j=0,n-i,(-1)^j*binomial(3*i+j+2,j)<<(n-i-j)/(n-i-j)!)*i!) \\ - M. F. Hasler, Oct 27 2013

Formula

a(n) ~ (n-1)!^2/exp(3) ~ 2*Pi*n^(2*n-1)/exp(2*n+3). - Vaclav Kotesovec, Sep 08 2016

Extensions

Better description Jul 15 1995
Mathematica program, more terms, better definition, comment and Stones link from Wouter Meeussen, Oct 27 2013
Minor corrections by M. F. Hasler, Oct 27 2013