cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A130077 Largest x such that 2^x divides A001623(n), the number of reduced three-line Latin rectangles.

Original entry on oeis.org

0, 2, 1, 3, 4, 6, 5, 6, 7, 9, 8, 11, 13, 14, 12, 16, 15, 17, 16, 18, 19, 21, 20, 21, 22, 24, 23, 27, 27, 30, 27, 29, 31, 33, 32, 34, 35, 37, 36, 37, 38, 40, 39, 42, 44, 45, 43, 50, 46, 48, 47, 49, 50, 52, 51, 52, 53, 55, 54, 59, 58, 62, 58, 60, 63, 65, 64, 66, 67, 69, 68, 69, 70
Offset: 3

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), May 06 2007

Keywords

Crossrefs

Programs

  • PARI
    a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!);
    a(n) = valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017

Formula

a(n) = A007814(A001623(n)). - Michel Marcus, Oct 02 2017

A130078 Largest 2^x dividing A001623(n), the number of reduced three-line Latin rectangles.

Original entry on oeis.org

1, 4, 2, 8, 16, 64, 32, 64, 128, 512, 256, 2048, 8192, 16384, 4096, 65536, 32768, 131072, 65536, 262144, 524288, 2097152, 1048576, 2097152, 4194304, 16777216, 8388608, 134217728, 134217728, 1073741824, 134217728, 536870912, 2147483648
Offset: 3

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), May 06 2007

Keywords

Crossrefs

Programs

  • PARI
    a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!);
    a(n) = 2^valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017

Formula

a(n) = A006519(A001623(n)). - Michel Marcus, Oct 02 2017

A130079 a(n) = n - A130077(n), i.e., n minus the largest x such that 2^x divides A001623(n), the number of reduced three-line Latin rectangles.

Original entry on oeis.org

3, 2, 4, 3, 3, 2, 4, 4, 4, 3, 5, 3, 2, 2, 5, 2, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 3, 4, 2, 6, 5, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 4, 3, 3, 6, 0, 5, 4, 6, 5, 5, 4, 6, 6, 6, 5, 7, 3, 5, 2, 7, 6, 4, 3, 5, 4, 4, 3, 5, 5, 5, 4, 6, 4, 1, 3, 6, 4, 5, 4, 6, 5, 5, 4, 6, 6, 6, 5, 7, 4, 5, 3, 7, 6, 5, 4
Offset: 3

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), May 06 2007

Keywords

Crossrefs

Programs

  • PARI
    a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!);
    a(n) = n - valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017

A001044 a(n) = (n!)^2.

Original entry on oeis.org

1, 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 229442532802560000, 38775788043632640000, 7600054456551997440000, 1710012252724199424000000, 437763136697395052544000000, 126513546505547170185216000000
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the symmetrical n X n matrix M_n(i,j) = 1/Max(i,j); then for n > 0 det(M_n)=1/a(n). - Benoit Cloitre, Apr 27 2002
The n-th entry of the sequence is the value of the permanent of a k X k matrix A defined as follows: k is the n-th odd number; if we concatenate the rows of A to form a vector v of length n^2, v_{i}=1 if i=1 or a multiple of 2. - Simone Severini, Feb 15 2006
a(n) = number of set partitions of {1,2,...,3n-1,3n} into blocks of size 3 in which the entries of each block mod 3 are distinct. For example, a(2) = 4 counts 123-456, 156-234, 126-345, 135-246. - David Callan, Mar 30 2007
From Emeric Deutsch, Nov 22 2007: (Start)
Number of permutations of {1,2,...,2n} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 1234, 1324, 3124 and 2314.
Number of permutations of {1,2,...,2n} with n even entries that are followed by a smaller entry. Example: a(2)=4 because we have 2143, 3421, 4213 and 4321.
Number of permutations of {1,2,...,2n-1} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 123, 132, 312 and 231.
Number of permutations of {1,2,...,2n-1} with n-1 odd entries followed by a smaller entry. Example: a(2)=4 because we have 132, 312, 231 and 321.
(End)
G. Leibniz in his "Ars Combinatoria" established the identity P(n)^2 = P(n-1)[P(n+1)-P(n)], where P(n) = n!. (For example, see the Burton reference.) - Mohammad K. Azarian, Mar 28 2008
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_2(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_2 is A001157. - Enrique Pérez Herrero, Aug 13 2011
The o.g.f. of 1/a(n) is BesselI(0,2*sqrt(x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
Number of n x n x n cubes C of zeros and ones such that C(x,y,z) and C(u,v,w) can be nonzero simultaneously only if either x!=u, y!=v, or z!=w. This generalizes permutations which can be considered as n x n squares P of zeros and ones such that P(x,y) and P(u,v) can be nonzero simultaneously only if either x!=u or y!=v. - Joerg Arndt, May 28 2012
a(n) is the number of functions f:[n]->[n(n+1)/2] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. - Dennis P. Walsh, Nov 26 2012
From Jerrold Grossman, Jul 22 2018: (Start)
a(n) is the number of n X n 0-1 matrices whose row sums and column sums are both {1,2,...,n}.
a(n) is the number of linear arrangements of 2n blocks of n different colors, 2 of each color, such that there are an even number of blocks between each pair of blocks of the same color.
(End)
Number of ways to place n instances of a digit inside an n X n X n cube so that no two instances lie on a plane parallel to a face of the cube (see Khovanova link, Lemma 6, p. 22). - Tanya Khovanova and Wayne Zhao, Oct 17 2018
Number of permutations P of length 2n which maximize Sum_{i=1..2n} |P_i - i|. - Fang Lixing, Dec 07 2018

Examples

			Consider the square array
  1,  2,  3,  4,  5,  6, ...
  2,  4,  6,  8, 10, 12, ...
  3,  6,  9, 12, 15, 18, ...
  4,  8, 12, 16, 20, 24, ...
  5, 10, 15, 20, 25, 30, ...
  ...
then a(n) = product of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003
a(3) = 36 since there are 36 functions f:[3]->[6] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. The functions, denoted by <f(1),f(2),f(3)>, are <1,2,4>, <1,2,5>, <1,2,6>, <1,3,4>, <1,3,5>, <1,3,6> and their respective permutations. - _Dennis P. Walsh_, Nov 26 2012
1 + x + 4*x^2 + 36*x^3 + 576*x^4 + 14400*x^5 + 518400*x^6 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • David Burton, "The History of Mathematics", Sixth Edition, Problem 2, p. 433.
  • J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada, No. 4/2004 (to appear).
  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.62(b).

Crossrefs

First right-hand column of triangle A008955.
Row n=2 of A225816.
Cf. A000290.
With signs, a row of A288580.

Programs

  • GAP
    List([0..20],n->Factorial(n)^2); # Muniru A Asiru, Oct 24 2018
    
  • Haskell
    import Data.List (genericIndex)
    a001044 n = genericIndex a001044_list n
    a001044_list = 1 : zipWith (*) (tail a000290_list) a001044_list
    -- Reinhard Zumkeller, Sep 05 2015
    
  • Magma
    [Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Oct 24 2018
    
  • Maple
    seq((n!)^2,n=0..20); # Dennis P. Walsh, Nov 26 2012
  • Mathematica
    Table[n!^2, {n, 0, 20}] (* Stefan Steinerberger, Apr 07 2006 *)
    Join[{1},Table[Det[DiagonalMatrix[Range[n]^2]],{n,20}]] (* Harvey P. Dale, Mar 31 2020 *)
  • PARI
    a(n)=n!^2 \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    import math
    for n in range(0,20): print(math.factorial(n)**2, end=', ') # Stefano Spezia, Oct 29 2018

Formula

a(n) = Integral_{x>=0} 2*BesselK(0, 2*sqrt(x))*x^n. This integral represents the n-th moment of a positive function defined on the positive half-axis. - Karol A. Penson, Oct 09 2001
a(n) ~ 2*Pi*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = polygorial(n, 4) = A000142(n)/A000079(n)*A000165(n) = (n!/2^n)*Product_{i=0..n-1} (2*i + 2) = n!*Pochhammer(1, n) = n!^2. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
a(n) = Sum_{k>=0} (-1)^k*C(n, k)^2*k!*(2*n-k)!. - Philippe Deléham, Jan 07 2004
a(n) = !n!1 = !n! = Product{i=0, 1, 2, ... .}_{0 < |n-i| <= n}(n-i) = n(n-1)(n-2)...(2)(1)(-1)(-2)...(-n+2)(-n+1)(-n) = [(-1)^n][(n!)^2]. - J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004
D-finite with recurrence: a(0) = 1, a(n) = n^2*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
From Sergei N. Gladkovskii, Jun 14 2012: (Start)
A(x) = Sum_{n>=0,N) a(n)*x^n = 1 + x/(U(0;N-2)-x); N >= 4; U(k)= 1 + x*(k+1)^2 - x*(k+2)^2/G(k+1); besides U(0;infinity)=x; (continued fraction).
Let B(x) = Sum_{n>=0} a(n)*x^n/((n!)*(n+s)!), then B(0) = 1/(1-x) for abs(x) < 1 and B(1)= -1/x * log(1-x) for abs(x)< 1.
(End).
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)^2*(1 - x*G(k+1)). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = det(S(i+2,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
a(n) = (2*n+1)!*2^(-4*n)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1). - Mircea Merca, Nov 12 2013
a(n) = A000290(A000142(n)). - Michel Marcus, Nov 12 2013
Sum_{n>=0} 1/a(n) = A070910 [Gradsteyn, Rzyhik 0.246.1]. - R. J. Mathar, Feb 25 2014. Corrected by Ilya Gutkovskiy, Aug 16 2016
From Ivan N. Ianakiev, Aug 16 2016: (Start)
a(n) = a(n-1) + 2*((n-1)^2)*sqrt(a(n-1)*a(n-2)) + ((n-1)^4)*a(n-2), for n > 1.
a(n) = a(n-1) - 2*(n^2 - 1)*sqrt(a(n-1)*a(n-2)) + (n^2 - 1)*a(n-2), for n > 1.
(End).
From Ilya Gutkovskiy, Aug 16 2016: (Start)
a(n) = A184877(n)*A184877(n-1).
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0,2) = A091681. (End)
Sum_{n>=0} a(n)/(2*n+1)! = 2*Pi/sqrt(27). - Daniel Suteu, Feb 06 2017
a(n) = [x^n] Product_{k=1..n} (1 + k^2*x). - Vaclav Kotesovec, Feb 19 2022
a(n) = (2*n+1)! * [x^(2*n+1)] 4*arcsin(x/2)/sqrt(4-x^2). - Ira M. Gessel, Dec 10 2024

Extensions

More terms from James Sellers, Sep 19 2000
More terms from Simone Severini, Feb 15 2006

A000186 Number of 3 X n Latin rectangles in which the first row is in order.

Original entry on oeis.org

1, 0, 0, 2, 24, 552, 21280, 1073760, 70299264, 5792853248, 587159944704, 71822743499520, 10435273503677440, 1776780700509416448, 350461958856515690496, 79284041282622163140608, 20392765404792755583221760, 5917934230798104348783083520, 1924427226324694427836833857536
Offset: 0

Views

Author

Keywords

Comments

Or number of n X n matrices with exactly one 1 and one 2 in each row and column which are not in the main diagonal, other entries 0. - Vladimir Shevelev, Mar 22 2010

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 183.
  • Dulmage, A. L.; McMaster, G. E. A formula for counting three-line Latin rectangles. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 279-289. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0392611 (52 #13428). - From N. J. A. Sloane, Apr 06 2012
  • I. Gessel, Counting three-line Latin rectangles, Lect. Notes Math, 1234(1986), 106-111. [From Vladimir Shevelev, Mar 25 2010]
  • Goulden and Jackson, Combin. Enum., Wiley, 1983 p. 284.
  • S. M. Jacob, The enumeration of the Latin rectangle of depth three..., Proc. London Math. Soc., 31 (1928), 329-336.
  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • S. M. Kerawala, The asymptotic number of three-deep Latin rectangles, Bull. Calcutta Math. Soc., 39 (1947), 71-72.
  • Koichi, Yamamoto, An asymptotic series for the number of three-line Latin rectangles, J. Math. Soc. Japan 1, (1950). 226-241.
  • W. Moser. A generalization of Riordan's formula for 3Xn Latin rectangles, Discrete Math., 40, 311-313 [From Vladimir Shevelev, Mar 25 2010]
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
  • V. S. Shevelev, Reduced Latin rectangles and square matrices with identical sums in the rows and columns [Russian], Diskret. Mat., 4 (1992), no. 1, 91-110.
  • V. S. Shevelev, A generalized Riordan formula for three-rowed Latin rectangles and its applications, DAN of the Ukraine, 2 (1991), 8-12 (in Russian) [From Vladimir Shevelev, Mar 25 2010]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
  • RJ Stones, S Lin, X Liu, G Wang, On Computing the Number of Latin Rectangles, Graphs and Combinatorics, Graphs and Combinatorics (2016) 32:1187-1202; DOI 10.1007/s00373-015-1643-1

Crossrefs

Programs

  • Maple
    for n from 1 to 250 do t0:=0; for j from 0 to n do for k from 0 to n-j do t0:=t0 + (2^j/j!)*k!*binomial(-3*(k+1), n-k-j); od: od: t0:=n!*t0; lprint(n,t0); od:
    Maple code for A000186 based on Eq. (30) of Riordan, p. 205. Eq. (30a) on p. 206 is wrong. - N. J. A. Sloane, Jan 21 2010. Thanks to Neven Juric for correcting an error in the definition of fU, Mar 01 2010. Additional comment and modifications of code due to changes in underlying sequences from William P. Orrick, Aug 12 2020: Eq. (30) and Eq. (30a) are, in fact, related to each other by a trivial transformation and are both valid. Current code is based on Eq. (30a).
    # A000166
    unprotect(D);
    D := proc(n) option remember; if n<=1 then 1-n else (n-1)*(D(n-1)+D(n-2));fi; end;
    [seq(D(n), n=0..30)];
    # A000179
    U := proc(n) if n=0 then 1 else add ((-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k), k=0..n); fi; end;
    [seq(U(n), n=0..30)];
    # A000186
    K:=proc(n) local k; global D, U; add( binomial(n,k)*D(n-k)*D(k)*U(n-2*k), k=0..floor(n/2) ); end;
    [seq(K(n), n=0..30)];
    # another Maple program:
    a:= proc(n) option remember; `if`(n<5, [1, 0, 0, 2, 24][n+1],
         ((n-1)*(n^2-2*n+2)*a(n-1) +(n-1)*(n-2)*(n^2-2*n+2)*a(n-2)
          +(n-1)*(n-2)*(n^2-2*n-2) *a(n-3)
          +2*(n-1)*(n-2)*(n-3)*(n^2-5*n+3) *a(n-4)
          -4*(n-2)*(n-3)*(n-4)*(n-1)^2 *a(n-5)) / (n-2))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 02 2013
  • Mathematica
    a[n_] := (t0 = 0; Do[t0 = t0 + (2^j/j!)*k!*Binomial[-3*(k+1), n-k-j], {j, 0, n}, {k, 0, n-j}]; n!*t0); Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 13 2011, after Maple *)
  • SageMath
    # after Maple code based on Riordan's Eq. (30a)
    d = [1,0]
    for j in range(2,31):
        d.append((j - 1) * (d[-1] + d[-2]))
    def u(n):
        if n == 0:
            return 1
        else:
            return sum((-1)^k * (2 * n) * binomial(2 * n - k, k) * factorial(n - k) / (2 * n - k) for k in range(0, n + 1))
    def k(n):
        return sum(binomial(n, k) * d[n - k] * d[k] * u(n - 2 * k) for k in range(0, floor(n / 2) + 1))
    [k(n) for n in range(0, 31)] # William P. Orrick, Aug 12 2020

Formula

a(n) = n!*Sum_{k+j<=n} (2^j/j!)*k!*binomial(-3*(k+1), n-k-j).
Note that the formula Sum_{k=0..n, k <= n/2} binomial(n, k)*D(n-k)*D(k)*U(n-2*k), where D() = A000166 and U() represents the menage numbers given by Riordan, p. 209 gives the wrong answers unless we set U(1) = -1 (or in other words we must take U() = A000179). With U(1) = 0 (see A335700) it produces A170904. See the Maple code here. - N. J. A. Sloane, Jan 21 2010, Apr 04 2010. Thanks to Vladimir Shevelev for clarifying this comment. Additional changes from William P. Orrick, Aug 12 2020
E.g.f.: exp(2*x) Sum(n>=0; n! x^n /(1+x)^(3*n+3)) from Gessel reference. - Wouter Meeussen, Nov 02 2013
a(n) ~ n!^2/exp(3). - Vaclav Kotesovec, Sep 08 2016
a(n+p)-2*a(n) is divisible by p for any prime p. - Mark van Hoeij, Jun 13 2019

Extensions

Formula and more terms from Vladeta Jovovic, Mar 31 2001
Edited by N. J. A. Sloane, Jan 21 2010, Mar 04 2010, Apr 04 2010

A001009 Triangle giving number L(n,k) of normalized k X n Latin rectangles.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 4, 4, 1, 11, 46, 56, 56, 1, 53, 1064, 6552, 9408, 9408, 1, 309, 35792, 1293216, 11270400, 16942080, 16942080, 1, 2119, 1673792, 420909504, 27206658048, 335390189568, 535281401856, 535281401856, 1, 16687, 103443808
Offset: 1

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 104.

Crossrefs

Rows include A001623, A000573. Diagonals include A000576.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 12 2010

A001626 Number of 3-line Latin rectangles.

Original entry on oeis.org

0, 0, 2, 36, 840, 29680, 1429920, 90318144, 7237943552, 717442928640, 86171602072320, 12331048749268480, 2072725870491859968, 404352831489304049664, 90605920564322676531200, 23110943021722435879157760, 6657484407493222296916131840
Offset: 1

Views

Author

Keywords

References

  • S. M. Jacob, The enumeration of the Latin rectangle of depth three..., Proc. London Math. Soc., 31 (1928), 329-336.
  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000186.

Formula

a(1) = 0, a(n) = A000186(n) + 2*(n-1)*a(n-1), n > 1. - Sean A. Irvine, Sep 25 2015

Extensions

More terms from Sean A. Irvine, Sep 25 2015

A275921 Number of 5 X n Latin rectangles.

Original entry on oeis.org

56, 9408, 11270400, 27206658048, 112681643083776, 746988383076286464, 7533492323047902093312, 111048869433803210653040640, 2315236533572491933131807916032, 66415035616070432053233927044726784, 2560483881619577552584872021599994249216
Offset: 5

Views

Author

N. J. A. Sloane, Aug 28 2016

Keywords

Crossrefs

A001624 Related to Latin rectangles.

Original entry on oeis.org

1, 5, 58, 1274, 41728, 1912112, 116346400, 9059742176, 877746364288, 103483282967936, 14581464284095744, 2419278174185319680, 466730664414683625472, 103580258158369503481856, 26198788829773597178540032
Offset: 2

Views

Author

Keywords

References

  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

a(2) = 1, a(n) = A001626(n) + A001626(n-1) + A001627(n-1) + (n-2)(a(n-1) + A001625(n-1)). - Sean A. Irvine, Sep 25 2015

Extensions

More terms from Sean A. Irvine, Sep 25 2015

A001625 Related to Latin rectangles.

Original entry on oeis.org

2, 4, 60, 1276, 41888, 1916064, 116522048, 9069595840, 878460379392, 103547791177216, 14588580791234048, 2420219602973093376, 466877775127725240320, 103607067936116866084864, 26204424894484840874483712
Offset: 2

Views

Author

Keywords

References

  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

a(2) = 2, a(n) = A001626(n) + 2 * A001627(n-1) + 2 * (n-1) * A001624(n-1). - Sean A. Irvine, Sep 25 2015

Extensions

More terms from Sean A. Irvine, Sep 25 2015
Showing 1-10 of 12 results. Next