A130077 Largest x such that 2^x divides A001623(n), the number of reduced three-line Latin rectangles.
0, 2, 1, 3, 4, 6, 5, 6, 7, 9, 8, 11, 13, 14, 12, 16, 15, 17, 16, 18, 19, 21, 20, 21, 22, 24, 23, 27, 27, 30, 27, 29, 31, 33, 32, 34, 35, 37, 36, 37, 38, 40, 39, 42, 44, 45, 43, 50, 46, 48, 47, 49, 50, 52, 51, 52, 53, 55, 54, 59, 58, 62, 58, 60, 63, 65, 64, 66, 67, 69, 68, 69, 70
Offset: 3
Keywords
Links
- John Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162.
- D. S. Stones, The many formulas for the number of Latin rectangles, Electron. J. Combin 17 (2010), A1.
- D. S. Stones and I. M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010), 204-215.
Programs
-
PARI
a001623(n) = n*(n-3)!*sum(i=0, n, sum(j=0, n-i, (-1)^j*binomial(3*i+j+2, j)<<(n-i-j)/(n-i-j)!)*i!); a(n) = valuation(a001623(n), 2); \\ Michel Marcus, Oct 02 2017
Comments