cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A046090 Consider all Pythagorean triples (X,X+1,Z) ordered by increasing Z; sequence gives X+1 values.

Original entry on oeis.org

1, 4, 21, 120, 697, 4060, 23661, 137904, 803761, 4684660, 27304197, 159140520, 927538921, 5406093004, 31509019101, 183648021600, 1070379110497, 6238626641380, 36361380737781, 211929657785304, 1235216565974041, 7199369738058940, 41961001862379597, 244566641436218640
Offset: 0

Views

Author

Keywords

Comments

Solution to a*(a-1) = 2b*(b-1) in natural numbers: a = a(n), b = b(n) = A011900(n).
n such that n^2 = (1/2)*(n+floor(sqrt(2)*n*floor(sqrt(2)*n))). - Benoit Cloitre, Apr 15 2003
Place a(n) balls in an urn, of which b(n) = A011900(n) are red; draw 2 balls without replacement; 2*Probability(2 red balls) = Probability(2 balls); this is equivalent to the Pell equation A(n)^2-2*B(n)^2 = -1 with a(n) = (A(n)+1)/2; b(n) = (B(n)+1)/2; and the fundamental solution (7;5) and the solution (3;2) for the unit form. - Paul Weisenhorn, Aug 03 2010
Find base x in which repdigit yy has a square that is repdigit zzzz, corresponding to Diophantine equation zzzz_x = (yy_x)^2; then, solution z = a(n) with x = A002315(n) and y = A001653(n+1) for n >= 1 (see Maurice Protat reference). - Bernard Schott, Dec 21 2022

Examples

			For n=4: a(4)=697; b(4)=493; 2*binomial(493,2)=485112=binomial(697,2). - _Paul Weisenhorn_, Aug 03 2010
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • Maurice Protat, Des Olympiades à l'Agrégation, De zzzz_x = (yy_x)^2 à Pell-Fermat, Problème 23, pp. 52-54, Ellipses, Paris, 1997.

Crossrefs

Programs

  • Haskell
    a046090 n = a046090_list !! n
    a046090_list = 1 : 4 : map (subtract 2)
       (zipWith (-) (map (* 6) (tail a046090_list)) a046090_list)
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)/((1-6*x+x^2)*(1-x)))); // G. C. Greubel, Jul 15 2018
  • Maple
    Digits:=100: seq(round((1+(7+5*sqrt(2))*(3+2*sqrt(2))^(n-1))/2)/2, n=0..20); # Paul Weisenhorn, Aug 03 2010
  • Mathematica
    Join[{1},#+1&/@With[{c=3+2Sqrt[2]},NestList[Floor[c #]+3&,3,20]]] (* Harvey P. Dale, Aug 19 2011 *)
    LinearRecurrence[{7,-7,1},{1,4,21},25] (* Harvey P. Dale, Apr 13 2012 *)
    a[n_] := (2-ChebyshevT[n, 3]+ChebyshevT[n+1, 3])/4; Array[a, 21, 0] (* Jean-François Alcover, Jul 10 2016, adapted from PARI *)
  • PARI
    a(n)=(2-subst(poltchebi(abs(n))-poltchebi(abs(n+1)),x,3))/4
    
  • PARI
    x='x+O('x^30); Vec((1-3*x)/((1-6*x+x^2)*(1-x))) \\ G. C. Greubel, Jul 15 2018
    

Formula

a(n) = (-1+sqrt(1+8*b(n)*(b(n)+1)))/2 with b(n) = A011900(n). [corrected by Michel Marcus, Dec 23 2022]
a(n) = 6*a(n-1) - a(n-2) - 2, n >= 2, a(0) = 1, a(1) = 4.
a(n) = (A(n+1) - 3*A(n) + 2)/4 with A(n) = A001653(n).
A001652(n) = -a(-1-n).
From Barry E. Williams, May 03 2000: (Start)
G.f.: (1-3*x)/((1-6*x+x^2)*(1-x)).
a(n) = partial sums of A001541(n). (End)
From Charlie Marion, Jul 01 2003: (Start)
A001652(n)*A001652(n+1) + a(n)*a(n+1) = A001542(n+1)^2 = A084703(n+1).
Let a(n) = A001652(n), b(n) = this sequence and c(n) = A001653(n). Then for k > j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n < 0, a(n) = -b(-n-1). Also a(n)*a(n+2k+1) + b(n)*b(n+2k+1) + c(n)*c(n+2k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2k) + b(n)*b(n+2k) + c(n)*c(n+2k) = 2*c(n+k)^2. (End)
a(n) = 1/2 + ((1-2^(1/2))/4)*(3 - 2^(3/2))^n + ((1+2^(1/2))/4)*(3 + 2^(3/2))^n. - Antonio Alberto Olivares, Oct 13 2003
2*a(n) = 2*A084159(n) + 1 + (-1)^(n+1) = 2*A046729(n) + 1 - (-1)^(n+1). - Lekraj Beedassy, Jul 16 2004
a(n) = A001109(n+1) - A053141(n). - Manuel Valdivia, Apr 03 2010
From Paul Weisenhorn, Aug 03 2010: (Start)
a(n+1) = round((1+(7+5*sqrt(2))*(3+2*sqrt(2))^n)/2);
b(n+1) = round((2+(10+7*sqrt(2))*(3+2*sqrt(2))^n)/4) = A011900(n+1).
(End)
a(n)*(a(n)-1)/2 = b(n)*b(n+1) and 2*a(n) - 1 = b(n) + b(n+1), where b(n) = A001109. - Kenneth J Ramsey, Apr 24 2011
T(a(n)) = A011900(n)^2 + A001109(n), where T(n) is the n-th triangular number. See also A001653. - Charlie Marion, Apr 25 2011
a(0)=1, a(1)=4, a(2)=21, a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Harvey P. Dale, Apr 13 2012
Limit_{n->oo} a(n+1)/a(n) = 3 + 2*sqrt(2) = A156035. - Ilya Gutkovskiy, Jul 10 2016
a(n) = A001652(n)+1. - Dimitri Papadopoulos, Jul 06 2017
a(n) = (A002315(n) + 1)/2. - Bernard Schott, Dec 21 2022
E.g.f.: (exp(x) + exp(3*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2. - Stefano Spezia, Mar 16 2024
a(n) = A002024(A029549(n))+1. - Pontus von Brömssen, Sep 11 2024

Extensions

Additional comments from Wolfdieter Lang
Comment moved to A001653 by Claude Morin, Sep 22 2023

A001623 Number of 3 X n reduced (normalized) Latin rectangles.

Original entry on oeis.org

1, 4, 46, 1064, 35792, 1673792, 103443808, 8154999232, 798030483328, 94866122760704, 13460459852344064, 2246551018310998016, 435626600453967929344, 97108406689489312301056, 24658059294992101453262848, 7075100096781964808223653888, 2277710095706779480096994066432, 817555425148510266964075644059648
Offset: 3

Views

Author

Keywords

Comments

A Latin rectangle [L_{n,k}] is called normalized [N_{n,k}] if the first row is (0,1, . . . , n-1), and reduced [R_{n,k}] if the first row is (0,1, . . . , n-1) and the first column is (0,1, . . . , k-1). Then L_{n,k} = n! N_{n,k} = (n! (n-1)! /(n-k)!) R_{n,k}.

Examples

			G.f. = x^3 + 4*x^4 + 46*x^5 + 1064*x^6 + 35792*x^7 + 1673792*x^8 + ...
		

References

  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001009.

Programs

  • Maple
    f:= n-> add(n*factorial(n-3)*factorial(i)*simplify(hypergeom([3*i+3, -n+i], [], 1/2))/(2^(-n+i)*factorial(n-i)),i=0..n):
    map(f, [$3..30]); # Robert Israel, Nov 07 2016
  • Mathematica
    Table[Sum[  n (n - 3)! (-1)^j 2^(n -i-j) i!/(n-i-j)! Binomial[3 i + j + 2, j], {i, 0, n}, {j, 0, n - i} ], {n, 3, 25}] (* Wouter Meeussen, Oct 27 2013 *)
  • PARI
    A001623 = n->n*(n-3)!*sum(i=0,n,sum(j=0,n-i,(-1)^j*binomial(3*i+j+2,j)<<(n-i-j)/(n-i-j)!)*i!) \\ - M. F. Hasler, Oct 27 2013

Formula

a(n) ~ (n-1)!^2/exp(3) ~ 2*Pi*n^(2*n-1)/exp(2*n+3). - Vaclav Kotesovec, Sep 08 2016

Extensions

Better description Jul 15 1995
Mathematica program, more terms, better definition, comment and Stones link from Wouter Meeussen, Oct 27 2013
Minor corrections by M. F. Hasler, Oct 27 2013

A000573 Number of 4 X n normalized Latin rectangles.

Original entry on oeis.org

4, 56, 6552, 1293216, 420909504, 207624560256, 147174521059584, 143968880078466048, 188237563987982390784, 320510030393570671051776, 695457005987768649183581184, 1888143905499961681708381310976, 6314083806394358817244705266941952, 25655084790196439186603345691314159616
Offset: 4

Views

Author

Brendan McKay and Eric Rogoyski

Keywords

References

  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.

Crossrefs

A000576 a(n) is the number of (n-2) X n normalized Latin rectangles.

Original entry on oeis.org

1, 3, 46, 6552, 11270400, 335390189568, 224382967916691456, 4292039421591854273003520, 2905990310033882693113989027594240
Offset: 3

Views

Author

Brendan McKay and Eric Rogoyski

Keywords

Crossrefs

Cf. A001009.

Extensions

a(11) from Ian Wanless, Jul 30 2010, from the 2005 McKay-Wanless paper.

A162544 Triangle giving number L(k,n) of isotopy classes of Latin rectangles.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 1, 4, 16, 56, 40, 22, 1, 4, 56, 1398, 6941, 3479, 564, 1, 7, 370, 93561, 4735238, 29163047, 13302311, 1676267, 1, 8, 2877, 8024046
Offset: 1

Views

Author

Vladan Radivojevic (vladanradivojevic(AT)yahoo.com), Jul 05 2009

Keywords

Comments

Isotopy class means an equivalence class of Latin rectangles under the operations of row permutation, column permutation and symbol permutation.

References

  • B. D. Mckay, Isomorph-free exhaustive generation, Department of Computer Science Australian National University, Canberra, 1998.

Crossrefs

A162545 Triangle giving number L(k,n) of normalized Latin rectangles which are lexicographically minimum of its isotopy class.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 1, 4, 14, 34, 31, 22, 1, 4, 54, 427, 1410, 1096, 564, 1, 7, 330, 20259, 509027, 3144797, 2847673, 1676267, 1, 8, 2409
Offset: 1

Views

Author

Vladan Radivojevic (vladanradivojevic(AT)yahoo.com), Jul 05 2009

Keywords

Crossrefs

Showing 1-6 of 6 results.