cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A046744 Erroneous version of A000186.

Original entry on oeis.org

1, 0, 0, 2, 24, 552, 21280, 103760, 70299264, 5792853248, 587159944704, 71822743499520
Offset: 0

Views

Author

Keywords

A000179 Ménage numbers: a(0) = 1, a(1) = -1, and for n >= 2, a(n) = number of permutations s of [0, ..., n-1] such that s(i) != i and s(i) != i+1 (mod n) for all i.

Original entry on oeis.org

1, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0

Views

Author

Keywords

Comments

According to rook theory, John Riordan considered a(1) to be -1. - Vladimir Shevelev, Apr 02 2010
This is also the value that the formulas of Touchard and of Wyman and Moser give and is compatible with many recurrences. - William P. Orrick, Aug 31 2020
Or, for n >= 3, the number of 3 X n Latin rectangles the second row of which is full cycle with a fixed order of its elements, e.g., the cycle (x_2,x_3,...,x_n,x_1) with x_1 < x_2 < ... < x_n. - Vladimir Shevelev, Mar 22 2010
Muir (p. 112) gives essentially this recurrence (although without specifying any initial conditions). Compare A186638. - N. J. A. Sloane, Feb 24 2011
Sequence discovered by Touchard in 1934. - L. Edson Jeffery, Nov 13 2013
Although these are also known as Touchard numbers, the problem was formulated by Lucas in 1891, who gave the recurrence formula shown below. See Cerasoli et al., 1988. - Stanislav Sykora, Mar 14 2014
An equivalent problem was formulated by Tait; solutions to Tait's problem were given by Muir (1878) and Cayley (1878). - William P. Orrick, Aug 31 2020
From Vladimir Shevelev, Jun 25 2015: (Start)
According to the ménage problem, 2*n!*a(n) is the number of ways of seating n married couples at 2*n chairs around a circular table, men and women in alternate positions, so that no husband is next to his wife.
It is known [Riordan, ch. 7] that a(n) is the number of arrangements of n non-attacking rooks on the positions of the 1's in an n X n (0,1)-matrix A_n with 0's in positions (i,i), i = 1,...,n, (i,i+1), i = 1,...,n-1, and (n,1). This statement could be written as a(n) = per(A_n). For example, A_5 has the form
001*11
1*0011
11001* (1)
11*100
0111*0,
where 5 non-attacking rooks are denoted by {1*}.
We can indicate a one-to-one correspondence between arrangements of n non-attacking rooks on the 1's of a matrix A_n and arrangements of n married couples around a circular table by the rules of the ménage problem, after the ladies w_1, w_2, ..., w_n have taken the chairs numbered
2*n, 2, 4, ..., 2*n-2 (2)
respectively. Suppose we consider an arrangement of rooks: (1,j_1), (2,j_2), ..., (n,j_n). Then the men m_1, m_2, ..., m_n took chairs with numbers
2*j_i - 3 (mod 2*n), (3)
where the residues are chosen from the interval[1,2*n]. Indeed {j_i} is a permutation of 1,...,n. So {2*j_i-3}(mod 2*n) is a permutation of odd positive integers <= 2*n-1. Besides, the distance between m_i and w_i cannot be 1. Indeed, the equality |2*(j_i-i)-1| = 1 (mod 2*n) is possible if and only if either j_i=i or j_i=i+1 (mod n) that correspond to positions of 0's in matrix A_n.
For example, in the case of positions of {1*} in(1) we have j_1=3, j_2=1, j_3=5, j_4=2, j_5=4. So, by(2) and (3) the chairs 1,2,...,10 are taken by m_4, w_2, m_1, w_3, m_5, w_4, m_3, w_5, m_2, w_1, respectively. (End)
The first 20 terms of this sequence were calculated in 1891 by E. Lucas (see [Lucas, p. 495]). - Peter J. C. Moses, Jun 26 2015
From Ira M. Gessel, Nov 27 2018: (Start)
If we invert the formula
Sum_{ n>=0 } u_n z^n = ((1-z)/(1+z)) F(z/(1+z)^2)
that Don Knuth mentions (see link) (i.e., set x=z/(1+z)^2 and solve for z in terms of x), we get a formula for F(z) = Sum_{n >= 0} n! z^n as a sum with all positive coefficients of (almost) powers of the Catalan number generating function.
The exact formula is (5) of the Yiting Li article.
This article also gives a combinatorial proof of this formula (though it is not as simple as one might want). (End)

Examples

			a(2) = 0; nothing works. a(3) = 1; (201) works. a(4) = 2; (2301), (3012) work. a(5) = 13; (20413), (23401), (24013), (24103), (30412), (30421), (34012), (34021), (34102), (40123), (43012), (43021), (43102) work.
		

References

  • W. W. R. Ball and H. S. M. Coxeter, Mathematical Recreations and Essays, 13th Ed. Dover, p. 50.
  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Nicola Zanichelli Editore, Bologna 1988, Chapter 3, p. 78.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 185, mu(n).
  • Kaplansky, Irving and Riordan, John, The probleme des menages, Scripta Math. 12, (1946). 113-124. See u_n.
  • E. Lucas, Théorie des nombres, Paris, 1891, pp. 491-495.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 1, p 256.
  • T. Muir, A Treatise on the Theory of Determinants. Dover, NY, 1960, Sect. 132, p. 112. - N. J. A. Sloane, Feb 24 2011
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
  • V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. (J. of the Akademy of Sciences of Russia) 4(1992), 91-110. - Vladimir Shevelev, Mar 22 2010
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Taylor, A problem on arrangements, Mess. Math., 32 (1902), 60ff.
  • J. Touchard, Permutations discordant with two given permutations, Scripta Math., 19 (1953), 108-119.
  • J. H. van Lint, Combinatorial Theory Seminar, Eindhoven University of Technology, Springer Lecture Notes in Mathematics, Vol. 382, 1974. See page 10.

Crossrefs

Diagonal of A058087. Also a diagonal of A008305.
A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - N. J. A. Sloane, Aug 06 2020

Programs

  • Haskell
    import Data.List (zipWith5)
    a000179 n = a000179_list !! n
    a000179_list = 1 : -1 : 0 : 1 : zipWith5
       (\v w x y z -> (x * y + (v + 2) * z - w) `div` v) [2..] (cycle [4,-4])
       (drop 4 a067998_list) (drop 3 a000179_list) (drop 2 a000179_list)
    -- Reinhard Zumkeller, Aug 26 2013
    
  • Maple
    A000179:= n ->add ((-1)^k*(2*n)*binomial(2*n-k,k)*(n-k)!/(2*n-k), k=0..n); # for n >= 1
    U:= proc(n) local k; add( (2*n/(2*n-k))*binomial(2*n-k,k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r,s) coeff( U(r),x,s ); end; A000179 := n->W(n,0); # valid for n >= 1
  • Mathematica
    a[n_] := 2*n*Sum[(-1)^k*Binomial[2*n - k, k]*(n - k)!/(2*n - k), {k, 0, n}]; a[0] = 1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 05 2012, from 2nd formula *)
  • PARI
    \\ 3 programs adapted to a(1) = -1 by Hugo Pfoertner, Aug 31 2020
    
  • PARI
    {a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=4, n, A[k] = (k * (k - 2) * A[k-1] + k * A[k-2] - 4 * (-1)^k) / (k-2)); A[n], 1)};/* Michael Somos, Jan 22 2008 */
    
  • PARI
    a(n)=if(n>1, round(2*n*exp(-2)*besselk(n, 2)), 1-2*n) \\ Charles R Greathouse IV, Nov 03 2014
    
  • PARI
    {a(n) = my(A); if( n, A = vector(n,i,i-2); for(k=5, n, A[k] = k * A[k-1] + 2 * A[k-2] + (4-k) * A[k-3] - A[k-4]); A[n], 1)} /* Michael Somos, May 02 2018 */
    
  • Python
    from math import comb, factorial
    def A000179(n): return 1 if n == 0 else sum((-2*n if k & 1 else 2*n)*comb(m:=2*n-k,k)*factorial(n-k)//m for k in range(n+1)) # Chai Wah Wu, May 27 2022

Formula

a(n) = ((n^2-2*n)*a(n-1) + n*a(n-2) - 4*(-1)^n)/(n-2) for n >= 3.
a(n) = A059375(n)/(2*n!) for n >= 2.
a(n) = Sum_{k=0..n} (-1)^k*(2*n)*binomial(2*n-k, k)*(n-k)!/(2*n-k) for n >= 1. - Touchard (1934)
G.f.: ((1-x)/(1+x))*Sum_{n>=0} n!*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 26 2007
a(2^k+2) == 0 (mod 2^k); for k >= 2, a(2^k) == 2(mod 2^k). - Vladimir Shevelev, Jan 14 2011
a(n) = round( 2*n*exp(-2)*BesselK(n,2) ) for n > 1. - Mark van Hoeij, Oct 25 2011
a(n) ~ (n/e)^n * sqrt(2*Pi*n)/e^2. - Charles R Greathouse IV, Jan 21 2016
0 = a(n)*(-a(n+2) +a(n+4)) +a(n+1)*(+a(n+1) +a(n+2) -3*a(n+3) -5*a(n+4) +a(n+5)) +a(n+2)*(+2*a(n+2) +3*a(n+3) -3*a(n+4)) +a(n+3)*(+2*a(n+3) +a(n+4) -a(n+5)) +a(n+4)*(+a(n+4)), for all n>1. If a(-2..1) = (0, -1, 2, -1) then also true for those values of n. - Michael Somos, Apr 29 2018
D-finite with recurrence: 0 = a(n) +n*a(n+1) -2*a(n+2) +(-n-4)*a(n+3) +a(n+4), for all n in Z where a(n) = a(-n) for all n in Z and a(0) = 2, a(1) = -1. - Michael Somos, May 02 2018
a(n) = Sum_{k=0..n} A213234(n,k) * A000023(n-2*k) = Sum_{k=0..n} (-1)^k * n/(n-k) * binomial(n-k, k) * (n-2*k)! Sum_{j=0..n-2*k} (-2)^j/j! for n >= 1. [Wyman and Moser (1958)]. - William P. Orrick, Jun 25 2020
a(k+4*p) - 2*a(k+2*p) + a(k) is divisible by p, for any k > 0 and any prime p. - Mark van Hoeij, Jan 11 2022

Extensions

More terms from James Sellers, May 02 2000
Additional comments from David W. Wilson, Feb 18 2003
a(1) changed to -1 at the suggestion of Don Knuth. - N. J. A. Sloane, Nov 26 2018

A094047 Number of seating arrangements of n couples around a round table (up to rotations) so that each person sits between two people of the opposite sex and no couple is seated together.

Original entry on oeis.org

0, 0, 2, 12, 312, 9600, 416880, 23879520, 1749363840, 159591720960, 17747520940800, 2363738855385600, 371511874881100800, 68045361697964851200, 14367543450324474009600, 3464541314885011705344000, 946263209467217020194816000, 290616691739323132839591936000
Offset: 1

Views

Author

Matthijs Coster, Apr 29 2004

Keywords

Comments

Also, the number of Hamiltonian directed circuits in the crown graph of order n.
Or the number of those 3 X n Latin rectangles (cf. A000186) the second row of which is a full cycle. - Vladimir Shevelev, Mar 22 2010

References

  • V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr.Mat.(J. of the Akademy of Sciences of Russia) 4(1992),91-110.

Crossrefs

Cf. A059375 (rotations are counted as different).

Programs

  • Maple
    A094047 := proc(n)
        if n < 3 then
            0;
        else
            (-1)^n*2*(n-1)!+n!*add( (-1)^j*(n-j-1)!*binomial(2*n-j-1,j),j=0..n-1) ;
        end if;
    end proc: # R. J. Mathar, Nov 02 2015
  • Mathematica
    Join[{0},Table[(-1)^n 2(n-1)!+n!Sum[(-1)^j (n-j-1)!Binomial[2n-j-1,j],{j,0,n-1}],{n,2,20}]] (* Harvey P. Dale, Mar 07 2012 *)

Formula

For n>1, a(n) = (-1)^n * 2 * (n-1)! + n! * Sum_{j=0..n-1} (-1)^j * (n-j-1)! * binomial(2*n-j-1,j). - Max Alekseyev, Feb 10 2008
a(n) = A059375(n) / (2*n) = A000179(n) * (n-1)!.
Conjecture: a(n) +(-n^2+2*n-3)*a(n-1) -(n-2)*(n^2-3*n+5)*a(n-2) -3*(n-2)*(n-3)*a(n-3) +(n-2)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Nov 02 2015
Conjecture: (-n+2)*a(n) +(n-1)*(n^2-3*n+3)*a(n-1) +(n-2)*(n-1)*(n^2-3*n+3)*a(n-2) +(n-2)*(n-3)*(n-1)^2*a(n-3)=0. - R. J. Mathar, Nov 02 2015
a(n) = (n-1) * (n * (a(n-1) + a(n-2)) - 4 * (-1)^n * (n-3)!) for n > 3. - Seiichi Manyama, Jan 18 2020
a(n) = 2 * A306496(n). - Alois P. Heinz, Jun 19 2022

Extensions

Better definition from Joel B. Lewis, Jun 30 2007
Formula and further terms from Max Alekseyev, Feb 10 2008

A000512 Number of equivalence classes of n X n matrices over {0,1} with rows and columns summing to 3, where equivalence is defined by row and column permutations.

Original entry on oeis.org

0, 0, 1, 1, 2, 7, 16, 51, 224, 1165, 7454, 56349, 481309, 4548786, 46829325, 519812910, 6177695783, 78190425826, 1049510787100, 14886252250208, 222442888670708, 3492326723315796, 57468395960854710, 989052970923320185, 17767732298980160822, 332572885090541084172, 6475438355244504235759, 130954580036269713385884
Offset: 1

Views

Author

Eric Rogoyski

Keywords

Comments

Also, isomorphism classes of bicolored cubic bipartite graphs, where isomorphism cannot exchange the colors.

Examples

			n=4: every matrix with 3 1's in each row and column can be transformed by permutation of rows (or columns) into {1110,1101,1011,0111}, therefore a(4)=1. - _Michael Steyer_, Feb 20 2003
		

References

  • A. Burgess, P. Danziger, E. Mendelsohn, B. Stevens, Orthogonally Resolvable Cycle Decompositions, 2013; http://www.math.ryerson.ca/~andrea.burgess/OCD-submit.pdf
  • Goulden and Jackson, Combin. Enum., Wiley, 1983 p. 284.

Crossrefs

Column k=3 of A133687.
A079815 may be an erroneous version of this, or it may have a slightly different (as yet unknown) definition. - N. J. A. Sloane, Sep 04 2010.

Extensions

Definition corrected by Brendan McKay, May 28 2006
a(1)-a(12) checked by Brendan McKay, Aug 27 2010
Terms a(15) and beyond from Andrew Howroyd, Apr 01 2020

A102761 Same as A000179, except that a(0) = 2.

Original entry on oeis.org

2, -1, 0, 1, 2, 13, 80, 579, 4738, 43387, 439792, 4890741, 59216642, 775596313, 10927434464, 164806435783, 2649391469058, 45226435601207, 817056406224416, 15574618910994665, 312400218671253762, 6577618644576902053, 145051250421230224304, 3343382818203784146955, 80399425364623070680706, 2013619745874493923699123
Offset: 0

Views

Author

N. J. A. Sloane, Apr 04 2010, following a suggestion from Vladimir Shevelev

Keywords

Comments

For any integer n>=0, 2 * Integral_{t=-2..2} T_n(t/2)*exp(-t)*dt = 4 * Integral_{z=-1..1} T_n(z)*exp(-2*z)*dz = a(n)*exp(2) - A300484(n)*exp(-2). - Max Alekseyev, Mar 08 2018

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.

Crossrefs

Row m=2 in A300481.
A000179, A102761, and A335700 are all essentially the same sequence but with different conventions for the initial terms a(0) and a(1). - N. J. A. Sloane, Aug 06 2020

Programs

  • PARI
    { A102761(n) = subst( serlaplace( 2*polchebyshev(n, 1, (x-2)/2)), x, 1); } \\ Max Alekseyev, Mar 06 2018

Formula

a(n) = Sum_{i=0..n} A127672(n,i) * A000023(i). - Max Alekseyev, Mar 06 2018
a(n) = A300481(2,n) = A300480(-2,n). - Max Alekseyev, Mar 06 2018
a(n) = A335391(0,n) (Touchard). - William P. Orrick, Aug 29 2020

Extensions

Changed a(0)=2 (making the sequence more consistent with existing formulae) by Max Alekseyev, Mar 06 2018

A000321 H_n(-1/2), where H_n(x) is Hermite polynomial of degree n.

Original entry on oeis.org

1, -1, -1, 5, 1, -41, 31, 461, -895, -6481, 22591, 107029, -604031, -1964665, 17669471, 37341149, -567425279, -627491489, 19919950975, 2669742629, -759627879679, 652838174519, 31251532771999, -59976412450835, -1377594095061119, 4256461892701199, 64623242860354751
Offset: 0

Views

Author

Keywords

Comments

Binomial transform gives A067994. Inverse binomial transform gives A062267(n)*(-1)^n. - Vladimir Reshetnikov, Oct 11 2016
The congruence a(n+k) == (-1)^k*a(n) (mod k) holds for all n and k. It follows that for even k the sequence obtained by reducing a(n) modulo k is purely periodic with period a divisor of k, while for odd k the sequence obtained by reducing a(n) modulo k is purely periodic with period a divisor of 2*k. See A047974. - Peter Bala, Apr 10 2023

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 209.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Mathematica
    Table[HermiteH[n, -1/2], {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Table[(-2)^n HypergeometricU[-n/2, 1/2, 1/4], {n, 0, 25}] (* Benedict W. J. Irwin, Oct 17 2017 *)
  • PARI
    N=66;  x='x+O('x^N);
    egf=exp(-x-x^2);  Vec(serlaplace(egf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    vector(50, n, n--; sum(k=0, n/2, (-1)^(n-k)*k!*binomial(n, k)*binomial(n-k, k))) \\ Altug Alkan, Oct 22 2015
    
  • PARI
    a(n) = polhermite(n, -1/2); \\ Michel Marcus, Oct 12 2016
    
  • Python
    from sympy import hermite
    def a(n): return hermite(n, -1/2) # Indranil Ghosh, May 26 2017
    

Formula

E.g.f.: exp(-x-x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n-k)*k!*C(n, k)*C(n-k, k).
a(n) = - a(n-1) - 2*(n-1)*a(n-2), a(0) = 1, a(1) = -1.
a(n) = Sum_{k=0..n} (-1)^(2*n-k)*C(k,n-k)*n!/k!. - Paul Barry, Oct 08 2007, corrected by Altug Alkan, Oct 22 2015
E.g.f.: 1 - x*(1 - E(0) )/(1+x) where E(k) = 1 - (1+x)/(k+1)/(1-x/(x+1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
E.g.f.: -x/Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: 1/(x*Q(0)), where Q(k) = 1 + 1/x + 2*(k+1)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 21 2013
a(n) = (-2)^n * U(-n/2, 1/2, 1/4), where U is the confluent hypergeometric function. - Benedict W. J. Irwin, Oct 17 2017
E.g.f.: Product_{k>=1} (1 + (-x)^k)^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019

Extensions

Formulae and more terms from Vladeta Jovovic, Apr 30 2001

A174564 Let J_n be n X n matrix which contains 1's only, I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (2,3,...,n,1). Then a(n) is the number of (0,1) n X n matrices A<=J_n-I-P with exactly two 1's in every row and column.

Original entry on oeis.org

0, 1, 13, 522, 27828, 1867363
Offset: 3

Views

Author

Vladimir Shevelev, Mar 22 2010

Keywords

References

  • V. S. Shevelev, Development of the rook technique for calculating the cyclic indicators of (0,1)-matrices, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 21-28 (in Russian).
  • S. E. Grigorchuk, V. S. Shevelev, An algorithm of computing the cyclic indicator of couples discordant permutations with restricted position, Izvestia Vuzov of the North-Caucasus region, Nature sciences 3 (1997), 5-13 (in Russian).

Crossrefs

A001626 Number of 3-line Latin rectangles.

Original entry on oeis.org

0, 0, 2, 36, 840, 29680, 1429920, 90318144, 7237943552, 717442928640, 86171602072320, 12331048749268480, 2072725870491859968, 404352831489304049664, 90605920564322676531200, 23110943021722435879157760, 6657484407493222296916131840
Offset: 1

Views

Author

Keywords

References

  • S. M. Jacob, The enumeration of the Latin rectangle of depth three..., Proc. London Math. Soc., 31 (1928), 329-336.
  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000186.

Formula

a(1) = 0, a(n) = A000186(n) + 2*(n-1)*a(n-1), n > 1. - Sean A. Irvine, Sep 25 2015

Extensions

More terms from Sean A. Irvine, Sep 25 2015

A174556 Number of 3 X n Latin rectangles whose second row contains two cycles.

Original entry on oeis.org

12, 240, 10480, 535080, 34634544
Offset: 4

Views

Author

Vladimir Shevelev, Mar 22 2010

Keywords

Crossrefs

A174580 Let J_n be an n X n matrix which contains 1's only, I = I_n be the n X n identity matrix, and P = P_n be the incidence matrix of the cycle (1,2,3,...,n). Then a(n) is the number of (0,1,2) n X n matrices A <= 2(J_n - I - P) with exactly one 1 and one 2 in every row and column.

Original entry on oeis.org

0, 2, 36, 1462, 83600, 5955474
Offset: 3

Views

Author

Vladimir Shevelev, Mar 23 2010

Keywords

References

  • V. S. Shevelev, Development of the rook technique for calculating the cyclic indicators of (0,1)-matrices, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 21-28 (in Russian).
  • S. E. Grigorchuk, V. S. Shevelev, An algorithm of computing the cyclic indicator of couples discordant permutations with restricted position, Izvestia Vuzov of the North-Caucasus region, Nature sciences 3 (1997), 5-13 (in Russian).

Crossrefs

Showing 1-10 of 26 results. Next