A060821
Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, -2, 0, 4, 0, -12, 0, 8, 12, 0, -48, 0, 16, 0, 120, 0, -160, 0, 32, -120, 0, 720, 0, -480, 0, 64, 0, -1680, 0, 3360, 0, -1344, 0, 128, 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256, 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512, -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024
Offset: 0
[1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
Triangle starts:
1;
0, 2;
-2, 0, 4;
0, -12, 0, 8;
12, 0, -48, 0, 16;
0, 120, 0, -160, 0, 32;
-120, 0, 720, 0, -480, 0, 64;
0, -1680, 0, 3360, 0, -1344, 0, 128;
1680, 0, -13440, 0, 13440, 0, -3584, 0, 256;
0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512;
-30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024;
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.
- T. D. Noe, Rows n=0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 801.
- Taekyun Kim and Dae San Kim, A note on Hermite polynomials, arXiv:1602.04096 [math.NT], 2016.
- Alexander Minakov, Question about integral of product of four Hermite polynomials integrated with squared weight, arXiv:1911.03942 [math.CO], 2019.
- Wikipedia, Hermite polynomials.
- Index entries for sequences related to Hermite polynomials.
Without initial zeros, same as
A059343.
-
with(orthopoly):for n from 0 to 10 do H(n,x):od;
T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
# Alternative:
T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
(T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
-
Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* Jean-François Alcover, Jan 18 2012 *)
-
for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ Charles R Greathouse IV, Jun 20 2012
-
from sympy import hermite, Poly, symbols
x = symbols('x')
def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
-
def Trow(n: int) -> list[int]:
row: list[int] = [0] * (n + 1); row[n] = 2**n
for k in range(n - 2, -1, -2):
row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
return row # Peter Luschny, Jan 08 2023
A293604
Expansion of e.g.f.: exp(x * (1 - x)).
Original entry on oeis.org
1, 1, -1, -5, 1, 41, 31, -461, -895, 6481, 22591, -107029, -604031, 1964665, 17669471, -37341149, -567425279, 627491489, 19919950975, -2669742629, -759627879679, -652838174519, 31251532771999, 59976412450835, -1377594095061119, -4256461892701199
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x-x^2) ))); // G. C. Greubel, Jul 12 2024
-
CoefficientList[Series[E^(x*(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 13 2017 *)
-
my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-x))))
-
a(n) = polhermite(n, 1/2); \\ Michel Marcus, Oct 13 2017
-
[hermite(n, 1/2) for n in range(31)] # G. C. Greubel, Jul 12 2024
A119275
Inverse of triangle related to Padé approximation of exp(x).
Original entry on oeis.org
1, -2, 1, 0, -6, 1, 0, 12, -12, 1, 0, 0, 60, -20, 1, 0, 0, -120, 180, -30, 1, 0, 0, 0, -840, 420, -42, 1, 0, 0, 0, 1680, -3360, 840, -56, 1, 0, 0, 0, 0, 15120, -10080, 1512, -72, 1, 0, 0, 0, 0, -30240, 75600, -25200, 2520, -90, 1, 0, 0, 0, 0, 0, -332640, 277200, -55440, 3960, -110, 1
Offset: 0
Triangle begins
1,
-2, 1,
0, -6, 1,
0, 12, -12, 1,
0, 0, 60, -20, 1,
0, 0, -120, 180, -30, 1,
0, 0, 0, -840, 420, -42, 1,
0, 0, 0, 1680, -3360, 840, -56, 1,
0, 0, 0, 0, 15120, -10080, 1512, -72, 1
Row 4: D(x^4) = (1 - x*(d/dx)^2 + x^2/2!*(d/dx)^4 - ...)(x^4) = x^4 - 12*x^3 + 12*x^2.
Cf.
A059344 (unsigned row reverse).
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> `if`(n<2,(n+1)*(-1)^n,0), 9); # Peter Luschny, Jan 27 2016
-
Table[(-1)^(n - k) (n - k)!*Binomial[n + 1, k + 1] Binomial[k + 1, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 12 2016 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[If[#<2, (#+1) (-1)^#, 0]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
-
# uses[inverse_bell_matrix from A265605]
# Unsigned values and an additional first column (1,0,0, ...).
multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
inverse_bell_matrix(multifact_4_2, 9) # Peter Luschny, Dec 31 2015
A334561
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(-Sum_{j=1..k} x^j).
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 5, 1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, 25, -41, 1, 1, -1, -1, -1, 1, 19, 31, -1, 1, -1, -1, -1, 1, 139, -209, 461, 1, 1, -1, -1, -1, 1, 19, 151, -2269, -895, -1, 1, -1, -1, -1, 1, 19, 871, -1429, 2801, -6481, 1, 1, -1, -1, -1, 1, 19, 151, 1091, -19039, 68615, 22591, -1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, -1, ...
1, -1, -1, -1, -1, -1, -1, ...
-1, 5, -1, -1, -1, -1, -1, ...
1, 1, 25, 1, 1, 1, 1, ...
-1, -41, 19, 139, 19, 19, 19, ...
1, 31, -209, 151, 871, 151, 151, ...
A144141
a(n) = Hermite(n,2).
Original entry on oeis.org
1, 4, 14, 40, 76, -16, -824, -3104, -880, 46144, 200416, -121216, -4894016, -16666880, 60576896, 708980224, 1018614016, -18612911104, -109084520960, 233726715904, 5080118660096, 10971406004224, -169479359707136, -1160659303014400, 3153413334470656
Offset: 0
-
[(&+[(-1)^k*Factorial(n)*(4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jul 10 2018
-
lst={};Do[AppendTo[lst,HermiteH[n,2]],{n,0,7^2}];lst
HermiteH[Range[0,30],2] (* Harvey P. Dale, May 20 2012 *)
-
for(n=0, 50, print1(polhermite(n, 2), ", " )) \\ G. C. Greubel, Jul 10 2018
A145881
Triangle read by rows: T(n,k) is the number of even permutations of {1,2,...,n} with no fixed points and having k excedances (n>=1; k>=1).
Original entry on oeis.org
0, 0, 1, 1, 0, 3, 0, 1, 11, 11, 1, 0, 25, 80, 25, 0, 1, 57, 407, 407, 57, 1, 0, 119, 1680, 3815, 1680, 119, 0, 1, 247, 6211, 26917, 26917, 6211, 247, 1, 0, 501, 21432, 160053, 303504, 160053, 21432, 501, 0, 1, 1013, 70775, 852347, 2747009, 2747009, 852347, 70775
Offset: 1
T(4,2)=3 because the even derangements of {1,2,3,4} are 3412, 2143 and 4321.
Triangle starts:
0;
0;
1, 1;
0, 3, 0;
1, 11, 11, 1;
0, 25, 80, 25, 0;
-
G:=((1-t)*exp(-t*z)/(1-t*exp((1-t)*z))-(t*exp(-z)-exp(-t*z))/(1-t))*1/2: Gser:=simplify(series(G,z=0,15)): for n to 11 do P[n]:=sort(expand(factorial(n)*coeff(Gser,z,n))) end do: 0; for n to 11 do seq(coeff(P[n],t,j),j=1..n-1) end do; # yields sequence in triangular form
A277378
Expansion of e.g.f. exp(2*x/(1-x))/sqrt(1-x^2).
Original entry on oeis.org
1, 2, 9, 50, 361, 3042, 29929, 331298, 4100625, 55777922, 828691369, 13316140818, 230256982201, 4257449540450, 83834039024649, 1750225301567618, 38614608429012001, 897325298084953602, 21904718673762721225, 560258287738117292018, 14981472258320814527241
Offset: 0
-
Table[Abs[HermiteH[n, I]]^2/2^n, {n, 0, 20}]
With[{nn=20},CoefficientList[Series[Exp[2x/(1-x)]/Sqrt[1-x^2],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 27 2023 *)
A277379
E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2).
Original entry on oeis.org
1, 1, 2, 10, 40, 296, 1936, 17872, 164480, 1820800, 21442816, 279255296, 3967316992, 59837670400, 988024924160, 17009993230336, 318566665977856, 6177885274406912, 129053377688043520, 2786107670662021120, 64136976817284448256, 1525720008470138454016
Offset: 0
-
Table[Abs[HermiteH[n, (1 + I)/2]]^2/2^n, {n, 0, 20}]
A308461
Expansion of e.g.f. exp(x + 2 * Sum_{k>=2} x^(2^k)/2^k).
Original entry on oeis.org
1, 1, 1, 1, 13, 61, 181, 421, 15961, 137593, 682921, 2498761, 77344741, 927575221, 6402167773, 31881065581, 4104839160241, 68050288734961, 609856397747281, 3857727706737553, 222655237411428541, 4351842324095032621, 47276537013742616581, 361153046139022585141
Offset: 0
-
nmax = 23; CoefficientList[Series[Exp[x + 2 Sum[x^(2^k)/2^k, {k, 2, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Product[(1 + (-x)^k)^((-1)^k MoebiusMu[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Showing 1-9 of 9 results.
Comments