cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A047974 a(n) = a(n-1) + 2*(n-1)*a(n-2).

Original entry on oeis.org

1, 1, 3, 7, 25, 81, 331, 1303, 5937, 26785, 133651, 669351, 3609673, 19674097, 113525595, 664400311, 4070168161, 25330978113, 163716695587, 1075631907655, 7296866339961, 50322142646161, 356790528924523, 2570964805355607, 18983329135883665, 142389639792952801, 1091556096587136051
Offset: 0

Views

Author

Keywords

Comments

Related to partially ordered sets. - Detlef Pauly (dettodet(AT)yahoo.de), Sep 25 2003
The number of partial permutation matrices P in GL_n with P^2=0. Alternatively, the number of orbits of the Borel group of upper triangular matrices acting by conjugation on the set of matrices M in GL_n with M^2=0. - Brian Rothbach (rothbach(AT)math.berkeley.edu), Apr 16 2004
Number of ways to use the elements of {1..n} once each to form a collection of sequences, each having length 1 or 2. - Bob Proctor, Apr 18 2005
Hankel transform is A108400. - Paul Barry, Feb 11 2008
This is also the number of subsets of equivalent ways to arrange the elements of n pairs, when equivalence is defined under the joint operation of (optional) reversal of elements combined with permutation of the labels and the subset maps to itself. - Ross Drewe, Mar 16 2008
Equals inverse binomial transform of A000898. - Gary W. Adamson, Oct 06 2008
a(n) is also the moment of order n for the measure of density exp(-(x-1)^2/4)/(2*sqrt(Pi)) over the interval -oo..oo. - Groux Roland, Mar 26 2011
The n-th term gives the number of fixed-point-free involutions in S_n^B, the group of permutations on the set {-n,...,-1,1,2,...,n}. - Matt Watson, Jul 26 2012
From Peter Bala, Dec 03 2017: (Start)
a(n+k) == a(n) (mod k) for all n and k. Hence for each k, the sequence a(n) taken modulo k is a periodic sequence and the exact period divides k. Cf. A115329.
More generally, the same divisibility property holds for any sequence with an e.g.f. of the form F(x)*exp(x*G(x)), where F(x) and G(x) are power series with integer coefficients and G(0) = 1. See the Bala link for a proof. (End)

Crossrefs

Row sums of A067147.
Column k=2 of A359762.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), this sequence (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • MATLAB
    N = 18; A = zeros(N,1); for n = 1:N; a = factorial(n); s = 0; k = 0; while k <= floor(n/2); b = factorial(n - 2*k); c = factorial(k); s = s + a/(b*c); k = k+1; end; A(n) = s; end; disp(A); % Ross Drewe, Mar 16 2008
    
  • Magma
    [n le 2 select 1 else Self(n-1) + 2*(n-2)*Self(n-2): n in [1..40]]; // G. C. Greubel, Jul 12 2024
    
  • Maple
    seq( add(n!/((n-2*k)!*k!), k=0..floor(n/2)), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 15 2001
    with(combstruct):seq(count(([S,{S=Set(Union(Z,Prod(Z,Z)))},labeled],size=n)),n=0..30); # Detlef Pauly (dettodet(AT)yahoo.de), Sep 25 2003
    A047974 := n -> I^(-n)*orthopoly[H](n, I/2):
    seq(A047974(n), n=0..26); # Peter Luschny, Nov 29 2017
  • Mathematica
    Range[0, 23]!*CoefficientList[ Series[ Exp[x*(1-x^2)/(1 - x)], {x, 0,23 }], x] - (* Zerinvary Lajos, Mar 23 2007 *)
    Table[I^(-n)*HermiteH[n, I/2], {n, 0, 23}] - (* Alyssa Byrnes and C. Vignat, Jan 31 2013 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(x^2+x))) \\ Joerg Arndt, May 04 2013
    
  • SageMath
    [(-i)^n*hermite(n,i/2) for n in range(41)] # G. C. Greubel, Jul 12 2024

Formula

E.g.f.: exp(x^2+x). - Len Smiley, Dec 11 2001
Binomial transform of A001813 (with interpolated zeros). - Paul Barry, May 09 2003
a(n) = Sum_{k=0..n} C(k,n-k)*n!/k!. - Paul Barry, Mar 29 2007
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*(2k)!/k!; - Paul Barry, Feb 11 2008
G.f.: 1/(1-x-2*x^2/(1-x-4*x^2/(1-x-6*x^2/(1-x-8*x^2/(1-... (continued fraction). -Paul Barry, Apr 10 2009
E.g.f.: Q(0); Q(k) = 1+(x^2+x)/(2*k+1-(x^2+x)*(2*k+1)/((x^2+x)+(2*k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+4*x)*d/dx. Cf. A000085 and A115329. - Peter Bala, Dec 07 2011
a(n) ~ 2^(n/2 - 1/2)*exp(sqrt(n/2) - n/2 - 1/8)*n^(n/2). - Vaclav Kotesovec, Oct 08 2012
E.g.f.: 1 + x*(E(0)-1)/(x+1) where E(k) = 1 + (1+x)/(k+1)/(1-x/(x+1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
a(n) = i^(-n)*H_{n}(i/2) with i the imaginary unit and H_{n} the Hermite polynomial of degree n. - Alyssa Byrnes and C. Vignat, Jan 31 2013
E.g.f.: -Q(0)/x where Q(k) = 1 - (1+x)/(1 - x/(x - (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: 1/Q(0), where Q(k) = 1 + x*2*k - x/(1 - x*(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 17 2013
E.g.f.: E(0)-1-x-x^2, where E(k) = 2 + 2*x*(1+x) - 8*k^2 + x^2*(1+x)^2*(2*k+3)*(2*k-1)/E(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 21 2013
E.g.f.: Product_{k>=1} 1/(1 + (-x)^k)^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019
a(n) = Sum_{k=0..floor(n/2)} 2^k*B(n, k), where B are the Bessel numbers A100861. - Peter Luschny, Jun 04 2021

A115329 Expansion of e.g.f.: exp(x + 2*x^2).

Original entry on oeis.org

1, 1, 5, 13, 73, 281, 1741, 8485, 57233, 328753, 2389141, 15539261, 120661465, 866545993, 7140942173, 55667517781, 484124048161, 4046845186145, 36967280461093, 328340133863533, 3137853448906601, 29405064157989241
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2006

Keywords

Comments

Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.
Combinatorial interpretation: a(n) counts the partitions of a set of n distinguishable objects into subsets of size 1 and 2 with the additional feature that the constituents of the subset of size 2 acquire 2 colors. - Karol A. Penson and P. Blasiak (blasiak(AT)lptl.jussieu.fr), Jun 03 2006
In general, e.g.f. exp(x+m*x^2) has general term sum{k=0..n, C(n,k)*m^k*(n-k)!/(n-m*k)!}. [Paul Barry, Nov 07 2008]
The sequence terms have the form 4*m + 1 (follows from the recurrence). a(n+k) = a(n) (mod k) holds for all n and k by an induction argument making use of the recurrence equation. For each k the sequence a(n) taken modulo k is thus periodic with exact period dividing k. - Peter Bala, Nov 15 2017

Crossrefs

Column k=4 of A359762.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), this sequence (q=2), A293720 (q=4).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( Exp(x+2*x^2) ))); // G. C. Greubel, Jul 12 2024
    
  • Maple
    a := n -> I^(1 - n)*2^((3*(n - 1))/2)*KummerU((1 - n)/2, 3/2, -1/8):
    seq(simplify(a(n)), n=0..21); # Peter Luschny, Nov 21 2017
  • Mathematica
    Range[0, 20]! CoefficientList[Series[Exp[(x + 2 x^2)], {x, 0, 20}], x] (* Vincenzo Librandi, May 22 2013 *)
  • PARI
    a(n)=local(m=4);n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)),n)
    
  • SageMath
    [(-i*sqrt(2))^n*hermite(n, i/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

Term-by-term square equals A115330 which has e.g.f.: exp(x/(1-4*x))/sqrt(1-16*x^2).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)2^k*n!/(n-k)! = Sum_{k=0..n} C(n,k)2^k*(n-k)!/(n-2k)!. - Paul Barry, Nov 07 2008
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+8*x)*d/dx. Cf. A000085 and A047974. - Peter Bala, Dec 07 2011
a(n) = a(n-1) + 4*(n-1)*a(n-2). - R. J. Mathar, Dec 10 2011
a(n) ~ 2^(n-1/2)*exp(sqrt(n)/2-n/2-1/16)*n^(n/2). - Vaclav Kotesovec, Oct 19 2012
G.f.: 1/Q(0), where Q(k)= 1 + 4*x*k - x/(1 - 4*x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 17 2013
G.f.: 1/G(0), where G(k)= 1 - x - 4*(k+1)*x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 21 2013
a(n) = i^(1 - n)*2^(3*(n - 1)/2)*KummerU((1 - n)/2, 3/2, -1/8). - Peter Luschny, Nov 21 2017
a(n) = (-i*sqrt(2))^n * Hermite(n, i/(2*sqrt(2))). - G. C. Greubel, Jul 12 2024

Extensions

More terms from Karol A. Penson and P. Blasiak (blasiak(AT)lptl.jussieu.fr), Jun 03 2006

A158954 Numerator of Hermite(n, 1/4).

Original entry on oeis.org

1, 1, -7, -23, 145, 881, -4919, -47207, 228257, 3249505, -13184999, -273145399, 887134513, 27109092817, -65152896535, -3101371292039, 4716976292161, 401692501673153, -239816274060743, -58083536514994775, -21631462857761839, 9271734379541402161
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 1/2, -7/4, -23/8, 145/16, 881/32, -4919/64, -47207/128, 228257/256, 3249505/512, ...
		

Crossrefs

Cf. A000079 (denominators).
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), this sequence (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(1/2)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
    
  • Maple
    A158954 := proc(n)
            orthopoly[H](n,1/4) ;
            numer(%) ;
    end proc: # R. J. Mathar, Feb 16 2014
  • Mathematica
    Numerator[Table[HermiteH[n,1/4],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011 *)
  • PARI
    a(n)=numerator(polhermite(n,1/4)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • SageMath
    [2^n*hermite(n, 1/4) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

D-finite with recurrence a(n) - a(n-1) + 8*(n-1)*a(n-2) = 0. [DLMF] - R. J. Mathar, Feb 16 2014
From G. C. Greubel, Jun 09 2018: (Start)
a(n) = 2^n*Hermite(n,1/4).
E.g.f.: exp(x-4*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/2)^(n-2k)/(k!*(n-2k)!)). (End)

A000321 H_n(-1/2), where H_n(x) is Hermite polynomial of degree n.

Original entry on oeis.org

1, -1, -1, 5, 1, -41, 31, 461, -895, -6481, 22591, 107029, -604031, -1964665, 17669471, 37341149, -567425279, -627491489, 19919950975, 2669742629, -759627879679, 652838174519, 31251532771999, -59976412450835, -1377594095061119, 4256461892701199, 64623242860354751
Offset: 0

Views

Author

Keywords

Comments

Binomial transform gives A067994. Inverse binomial transform gives A062267(n)*(-1)^n. - Vladimir Reshetnikov, Oct 11 2016
The congruence a(n+k) == (-1)^k*a(n) (mod k) holds for all n and k. It follows that for even k the sequence obtained by reducing a(n) modulo k is purely periodic with period a divisor of k, while for odd k the sequence obtained by reducing a(n) modulo k is purely periodic with period a divisor of 2*k. See A047974. - Peter Bala, Apr 10 2023

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 209.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Mathematica
    Table[HermiteH[n, -1/2], {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Table[(-2)^n HypergeometricU[-n/2, 1/2, 1/4], {n, 0, 25}] (* Benedict W. J. Irwin, Oct 17 2017 *)
  • PARI
    N=66;  x='x+O('x^N);
    egf=exp(-x-x^2);  Vec(serlaplace(egf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    vector(50, n, n--; sum(k=0, n/2, (-1)^(n-k)*k!*binomial(n, k)*binomial(n-k, k))) \\ Altug Alkan, Oct 22 2015
    
  • PARI
    a(n) = polhermite(n, -1/2); \\ Michel Marcus, Oct 12 2016
    
  • Python
    from sympy import hermite
    def a(n): return hermite(n, -1/2) # Indranil Ghosh, May 26 2017
    

Formula

E.g.f.: exp(-x-x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n-k)*k!*C(n, k)*C(n-k, k).
a(n) = - a(n-1) - 2*(n-1)*a(n-2), a(0) = 1, a(1) = -1.
a(n) = Sum_{k=0..n} (-1)^(2*n-k)*C(k,n-k)*n!/k!. - Paul Barry, Oct 08 2007, corrected by Altug Alkan, Oct 22 2015
E.g.f.: 1 - x*(1 - E(0) )/(1+x) where E(k) = 1 - (1+x)/(k+1)/(1-x/(x+1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
E.g.f.: -x/Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: 1/(x*Q(0)), where Q(k) = 1 + 1/x + 2*(k+1)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 21 2013
a(n) = (-2)^n * U(-n/2, 1/2, 1/4), where U is the confluent hypergeometric function. - Benedict W. J. Irwin, Oct 17 2017
E.g.f.: Product_{k>=1} (1 + (-x)^k)^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019

Extensions

Formulae and more terms from Vladeta Jovovic, Apr 30 2001

A293720 Expansion of e.g.f.: exp(x + 4*x^2).

Original entry on oeis.org

1, 1, 9, 25, 241, 1041, 10681, 60649, 658785, 4540321, 51972841, 415198521, 4988808529, 44847866545, 563683953561, 5586645006601, 73228719433921, 788319280278849, 10747425123292105, 124265401483446361, 1757874020223846321, 21640338257575264081
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2017

Keywords

Crossrefs

Column k=2 of A293724.
Column k=8 of A359762.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), this sequence (q=4).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( Exp(x+4*x^2) ))); // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    CoefficientList[Series[E^(x + 4*x^2), {x,0,30}], x] * Range[0,30]! (* Vaclav Kotesovec, Oct 15 2017 *)
  • PARI
    my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x+4*x^2)))
    
  • SageMath
    [(-2*i)^n*hermite(n, i/4) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

a(n) ~ 2^((3*n-1)/2) * exp(-1/32 + sqrt(2*n)/4 - n/2) * n^(n/2). - Vaclav Kotesovec, Oct 15 2017
a(n) = (-2*i)^n * Hermite(n, i/4). - G. C. Greubel, Jul 12 2024

A362176 Expansion of e.g.f. exp(x * (1-2*x)).

Original entry on oeis.org

1, 1, -3, -11, 25, 201, -299, -5123, 3249, 167185, 50221, -6637179, -8846903, 309737689, 769776645, -16575533939, -62762132639, 998072039457, 5265897058909, -66595289781995, -466803466259079, 4860819716300521, 44072310882063157, -383679824152382691
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2023

Keywords

Crossrefs

Column k=4 of A362277.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), A362177 (q=-3), this sequence (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( Exp(x-2*x^2) ))); // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[x-2*x^2], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Jul 12 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-2*x))))
    
  • SageMath
    [(-sqrt(2))^n*hermite(n, 1/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

a(n) = a(n-1) - 4*(n-1)*a(n-2) for n > 1.
a(n) = n! * Sum_{k=0..floor(n/2)} (-2)^k / (k! * (n-2*k)!).
a(n) = (-sqrt(2))^n * Hermite(n, 1/(2*sqrt(2))). - G. C. Greubel, Jul 12 2024

A362177 Expansion of e.g.f. exp(x * (1-3*x)).

Original entry on oeis.org

1, 1, -5, -17, 73, 481, -1709, -19025, 52753, 965953, -1882709, -59839889, 64418905, 4372890913, -651783677, -367974620369, -309314089439, 35016249465985, 66566286588763, -3715188655737617, -11303745326856599, 434518893361657441, 1858790804545588915
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2023

Keywords

Crossrefs

Column k=6 of A362277.
Sequences with e.g.f = exp(x + q*x^2): A158968 (q=-9), A158954 (q=-4), this sequence (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    Coefficients(R!(Laplace( Exp(x-3*x^2) ))); // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[Exp[x-3*x^2], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Jul 12 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-3*x))))
    
  • SageMath
    [(-sqrt(3))^n*hermite(n, 1/(2*sqrt(3))) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

a(n) = a(n-1) - 6*(n-1)*a(n-2) for n > 1.
a(n) = n! * Sum_{k=0..floor(n/2)} (-3)^k / (k! * (n-2*k)!).
a(n) = (-sqrt(3))^n * Hermite(n, 1/(2*sqrt(3))). - G. C. Greubel, Jul 12 2024

A158968 Numerator of Hermite(n, 1/6).

Original entry on oeis.org

1, 1, -17, -53, 865, 4681, -73169, -578717, 8640577, 91975825, -1307797649, -17863446149, 241080488353, 4099584856537, -52313249418065, -1085408633265389, 13039168709612161, 325636855090044193, -3664348770051277073, -109170689819225595605, 1144036589538311163361
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Crossrefs

Sequences with e.g.f = exp(x + q*x^2): this sequence (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4).

Programs

  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(1/3)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
    
  • Mathematica
    Numerator[Table[HermiteH[n,1/6],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
    Table[3^n*HermiteH[n, 1/6], {n,0, 50}] (* G. C. Greubel, Jul 10 2018 *)
  • PARI
    a(n)=numerator(polhermite(n,1/6)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • SageMath
    [3^n*hermite(n, 1/6) for n in range(31)] # G. C. Greubel, Jul 12 2024

Formula

From G. C. Greubel, Jun 02 2018: (Start)
a(n) = 3^n * Hermite(n, 1/6).
E.g.f.: exp(x - 9*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/3)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -a(n-1) +18*(n-1)*a(n-2)=0. - [DLMF] Georg Fischer, Feb 06 2021

A362277 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j * binomial(n-j,j)/(n-j)!.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -2, 1, 1, 1, -2, -5, -2, 1, 1, 1, -3, -8, 1, 6, 1, 1, 1, -4, -11, 10, 41, 16, 1, 1, 1, -5, -14, 25, 106, 31, -20, 1, 1, 1, -6, -17, 46, 201, -44, -461, -132, 1, 1, 1, -7, -20, 73, 326, -299, -1952, -895, 28, 1, 1, 1, -8, -23, 106, 481, -824, -5123, -1028, 6481, 1216, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2023

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,    1,    1,     1, ...
  1,  1,  1,   1,    1,    1,     1, ...
  1,  0, -1,  -2,   -3,   -4,    -5, ...
  1, -2, -5,  -8,  -11,  -14,   -17, ...
  1, -2,  1,  10,   25,   46,    73, ...
  1,  6, 41, 106,  201,  326,   481, ...
  1, 16, 31, -44, -299, -824, -1709, ...
		

Crossrefs

Columns k=0..6 give A000012, (-1)^n * A001464(n), A293604, A362278, A362176, A362279, A362177.
Main diagonal gives A362276.
T(n,2*n) gives A362282.

Programs

  • PARI
    T(n,k) = n!*sum(j=0,n\2, (-k/2)^j/(j!*(n-2*j)!));

Formula

E.g.f. of column k: exp(x - k*x^2/2).
T(n,k) = T(n-1,k) - k*(n-1)*T(n-2,k) for n > 1.
T(n,k) = n! * Sum_{j=0..floor(n/2)} (-k/2)^j / (j! * (n-2*j)!).

A246607 Expansion of e.g.f. exp(x - x^3).

Original entry on oeis.org

1, 1, 1, -5, -23, -59, 241, 2311, 9745, -30743, -529919, -3161069, 6984121, 216832045, 1696212337, -2117117729, -138721306079, -1359994188719, 367573878145, 127713732858667, 1523067770484361, 1104033549399061, -159815269852521359, -2270787199743845705, -3946710127731620303
Offset: 0

Views

Author

Robert G. Wilson v, Aug 31 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Range[0, 24]! CoefficientList[Series[Exp[x - x^3], {x, 0, 24}], x] (* Robert G. Wilson v, Aug 31 2014, with correction from Vincenzo Librandi *)
  • PARI
    default(seriesprecision, 30); serlaplace(exp(x-x^3)) \\ Michel Marcus, Aug 31 2014
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-1)^k*binomial(n-2*k, k)/(n-2*k)!); \\ Seiichi Manyama, Feb 25 2022
    
  • PARI
    a(n) = if(n<3, 1, a(n-1)-3!*binomial(n-1, 2)*a(n-3)); \\ Seiichi Manyama, Feb 25 2022

Formula

From Seiichi Manyama, Feb 25 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * binomial(n-2*k,k)/(n-2*k)!.
a(n) = a(n-1) - 3! * binomial(n-1,2) * a(n-3) for n > 2. (End)
Showing 1-10 of 17 results. Next