A047974
a(n) = a(n-1) + 2*(n-1)*a(n-2).
Original entry on oeis.org
1, 1, 3, 7, 25, 81, 331, 1303, 5937, 26785, 133651, 669351, 3609673, 19674097, 113525595, 664400311, 4070168161, 25330978113, 163716695587, 1075631907655, 7296866339961, 50322142646161, 356790528924523, 2570964805355607, 18983329135883665, 142389639792952801, 1091556096587136051
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Peter Alspaugh, James Garrett, Nataša Jonoska, and Masahico Saito, Structures of Monoids Motivated by DNA Origami, arXiv:2501.14966 [math.RA], 2025. See p. 22.
- Tewodros Amdeberhan, Valerio De Angelis, Atul Dixit, Victor H. Moll, and Christophe Vignat, From sequences to polynomials and back, via operator orderings, J. Math. Phys. 54, 123502 (2013); Alternative copy
- Peter Bala, Integer sequences that become periodic on reduction modulo k for all k
- Jonathan Burns, Assembly Graph Words - Single Transverse Component (Counts); Alternative copy
- Jonathan Burns, Egor Dolzhenko, Natasa Jonoska, Tilahun Muche and Masahico Saito, Four-Regular Graphs with Rigid Vertices Associated to DNA Recombination, Discrete Applied Mathematics, Volume 161, Issues 10-11, July 2013, Pages 1378-1394; Alternative copy.
- Jonathan Burns and Tilahun Muche, Counting Irreducible Double Occurrence Words, arXiv preprint arXiv:1105.2926 [math.CO], 2011.
- Samuele Giraudo, Combalgebraic structures on decorated cliques, arXiv:1709.08416 [math.CO], 2017; and also, Formal Power Series and Algebraic Combinatorics, Séminaire Lotharingien de Combinatoire, 78B.15, 2017, p. 8.
- Tom Halverson and Mike Reeks, Gelfand Models for Diagram Algebras, arXiv preprint arXiv:1302.6150 [math.RT], 2013.
- Andrei Khruzin, Enumeration of chord diagrams, arXiv:math/0008209 [math.CO], 2000.
- G. Latouche and P. G. Taylor, A stochastic fluid model for an ad hoc mobile network, Queueing Syst. 63, No. 1-4, 109-129 (2009), eq. (1).
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- Jocelyn Quaintance and Harris Kwong, Permutations and combinations of colored multisets, JIS 13 (2010) #10.2.6.
- Index entries for related partition-counting sequences
- Index entries for sequences related to Hermite polynomials
-
N = 18; A = zeros(N,1); for n = 1:N; a = factorial(n); s = 0; k = 0; while k <= floor(n/2); b = factorial(n - 2*k); c = factorial(k); s = s + a/(b*c); k = k+1; end; A(n) = s; end; disp(A); % Ross Drewe, Mar 16 2008
-
[n le 2 select 1 else Self(n-1) + 2*(n-2)*Self(n-2): n in [1..40]]; // G. C. Greubel, Jul 12 2024
-
seq( add(n!/((n-2*k)!*k!), k=0..floor(n/2)), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 15 2001
with(combstruct):seq(count(([S,{S=Set(Union(Z,Prod(Z,Z)))},labeled],size=n)),n=0..30); # Detlef Pauly (dettodet(AT)yahoo.de), Sep 25 2003
A047974 := n -> I^(-n)*orthopoly[H](n, I/2):
seq(A047974(n), n=0..26); # Peter Luschny, Nov 29 2017
-
Range[0, 23]!*CoefficientList[ Series[ Exp[x*(1-x^2)/(1 - x)], {x, 0,23 }], x] - (* Zerinvary Lajos, Mar 23 2007 *)
Table[I^(-n)*HermiteH[n, I/2], {n, 0, 23}] - (* Alyssa Byrnes and C. Vignat, Jan 31 2013 *)
-
my(x='x+O('x^66)); Vec(serlaplace(exp(x^2+x))) \\ Joerg Arndt, May 04 2013
-
[(-i)^n*hermite(n,i/2) for n in range(41)] # G. C. Greubel, Jul 12 2024
A293604
Expansion of e.g.f.: exp(x * (1 - x)).
Original entry on oeis.org
1, 1, -1, -5, 1, 41, 31, -461, -895, 6481, 22591, -107029, -604031, 1964665, 17669471, -37341149, -567425279, 627491489, 19919950975, -2669742629, -759627879679, -652838174519, 31251532771999, 59976412450835, -1377594095061119, -4256461892701199
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x-x^2) ))); // G. C. Greubel, Jul 12 2024
-
CoefficientList[Series[E^(x*(1-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 13 2017 *)
-
my(N=66, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-x))))
-
a(n) = polhermite(n, 1/2); \\ Michel Marcus, Oct 13 2017
-
[hermite(n, 1/2) for n in range(31)] # G. C. Greubel, Jul 12 2024
A115329
Expansion of e.g.f.: exp(x + 2*x^2).
Original entry on oeis.org
1, 1, 5, 13, 73, 281, 1741, 8485, 57233, 328753, 2389141, 15539261, 120661465, 866545993, 7140942173, 55667517781, 484124048161, 4046845186145, 36967280461093, 328340133863533, 3137853448906601, 29405064157989241
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x+2*x^2) ))); // G. C. Greubel, Jul 12 2024
-
a := n -> I^(1 - n)*2^((3*(n - 1))/2)*KummerU((1 - n)/2, 3/2, -1/8):
seq(simplify(a(n)), n=0..21); # Peter Luschny, Nov 21 2017
-
Range[0, 20]! CoefficientList[Series[Exp[(x + 2 x^2)], {x, 0, 20}], x] (* Vincenzo Librandi, May 22 2013 *)
-
a(n)=local(m=4);n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)),n)
-
[(-i*sqrt(2))^n*hermite(n, i/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024
More terms from
Karol A. Penson and P. Blasiak (blasiak(AT)lptl.jussieu.fr), Jun 03 2006
A158954
Numerator of Hermite(n, 1/4).
Original entry on oeis.org
1, 1, -7, -23, 145, 881, -4919, -47207, 228257, 3249505, -13184999, -273145399, 887134513, 27109092817, -65152896535, -3101371292039, 4716976292161, 401692501673153, -239816274060743, -58083536514994775, -21631462857761839, 9271734379541402161
Offset: 0
Numerators of 1, 1/2, -7/4, -23/8, 145/16, 881/32, -4919/64, -47207/128, 228257/256, 3249505/512, ...
-
[Numerator((&+[(-1)^k*Factorial(n)*(1/2)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 09 2018
-
A158954 := proc(n)
orthopoly[H](n,1/4) ;
numer(%) ;
end proc: # R. J. Mathar, Feb 16 2014
-
Numerator[Table[HermiteH[n,1/4],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2011 *)
-
a(n)=numerator(polhermite(n,1/4)) \\ Charles R Greathouse IV, Jan 29 2016
-
[2^n*hermite(n, 1/4) for n in range(31)] # G. C. Greubel, Jul 12 2024
A362176
Expansion of e.g.f. exp(x * (1-2*x)).
Original entry on oeis.org
1, 1, -3, -11, 25, 201, -299, -5123, 3249, 167185, 50221, -6637179, -8846903, 309737689, 769776645, -16575533939, -62762132639, 998072039457, 5265897058909, -66595289781995, -466803466259079, 4860819716300521, 44072310882063157, -383679824152382691
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x-2*x^2) ))); // G. C. Greubel, Jul 12 2024
-
With[{m=30}, CoefficientList[Series[Exp[x-2*x^2], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Jul 12 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-2*x))))
-
[(-sqrt(2))^n*hermite(n, 1/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024
A362177
Expansion of e.g.f. exp(x * (1-3*x)).
Original entry on oeis.org
1, 1, -5, -17, 73, 481, -1709, -19025, 52753, 965953, -1882709, -59839889, 64418905, 4372890913, -651783677, -367974620369, -309314089439, 35016249465985, 66566286588763, -3715188655737617, -11303745326856599, 434518893361657441, 1858790804545588915
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!(Laplace( Exp(x-3*x^2) ))); // G. C. Greubel, Jul 12 2024
-
With[{m=30}, CoefficientList[Series[Exp[x-3*x^2], {x,0,m}], x]*Range[0, m]!] (* G. C. Greubel, Jul 12 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-3*x))))
-
[(-sqrt(3))^n*hermite(n, 1/(2*sqrt(3))) for n in range(31)] # G. C. Greubel, Jul 12 2024
A158968
Numerator of Hermite(n, 1/6).
Original entry on oeis.org
1, 1, -17, -53, 865, 4681, -73169, -578717, 8640577, 91975825, -1307797649, -17863446149, 241080488353, 4099584856537, -52313249418065, -1085408633265389, 13039168709612161, 325636855090044193, -3664348770051277073, -109170689819225595605, 1144036589538311163361
Offset: 0
-
[Numerator((&+[(-1)^k*Factorial(n)*(1/3)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 10 2018
-
Numerator[Table[HermiteH[n,1/6],{n,0,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
Table[3^n*HermiteH[n, 1/6], {n,0, 50}] (* G. C. Greubel, Jul 10 2018 *)
-
a(n)=numerator(polhermite(n,1/6)) \\ Charles R Greathouse IV, Jan 29 2016
-
[3^n*hermite(n, 1/6) for n in range(31)] # G. C. Greubel, Jul 12 2024
A359762
Array read by ascending antidiagonals. T(n, k) = n!*[x^n] exp(x + (k/2) * x^2). A generalization of the number of involutions (or of 'telephone numbers').
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 10, 7, 4, 1, 1, 1, 26, 25, 10, 5, 1, 1, 1, 76, 81, 46, 13, 6, 1, 1, 1, 232, 331, 166, 73, 16, 7, 1, 1, 1, 764, 1303, 856, 281, 106, 19, 8, 1, 1, 1, 2620, 5937, 3844, 1741, 426, 145, 22, 9, 1, 1
Offset: 0
Array T(n, k) starts:
[n\k] 0 1 2 3 4 5 6 7
--------------------------------------------------------------
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... [A000012]
[1] 1, 1, 1, 1, 1, 1, 1, 1, ... [A000012]
[2] 1, 2, 3, 4, 5, 6, 7, 8, ... [A000027]
[3] 1, 4, 7, 10, 13, 16, 19, 22, ... [A016777]
[4] 1, 10, 25, 46, 73, 106, 145, 190, ... [A100536]
[5] 1, 26, 81, 166, 281, 426, 601, 806, ...
[6] 1, 76, 331, 856, 1741, 3076, 4951, 7456, ...
[7] 1, 232, 1303, 3844, 8485, 15856, 26587, 41308, ...
[8] 1, 764, 5937, 21820, 57233, 123516, 234529, 406652, ...
[9] 1, 2620, 26785, 114076, 328753, 757756, 1510705, 2719900, ...
[A000085][A047974][A115327][A115329][A115331]
- John Riordan, Introduction to Combinatorial Analysis, Dover (2002).
-
T := (n, k) -> add(binomial(n, j)*doublefactorial(j-1)*k^(j/2), j = 0..n, 2):
for n from 0 to 9 do lprint(seq(T(n, k), k = 0..7)) od;
T := (n, k) -> ifelse(k=0, 1, I^(-n)*(2*k)^(n/2)*KummerU(-n/2, 1/2, -1/(2*k))):
seq(seq(simplify(T(n-k, k)), k = 0..n), n = 0..10);
T := proc(n, k) exp(x + (k/2)*x^2): series(%, x, 16): n!*coeff(%, x, n) end:
seq(lprint(seq(simplify(T(n, k)), k = 0..8)), n = 0..9);
T := proc(n, k) option remember; if n = 0 or n = 1 then 1 else T(n, k-1) +
n*(k-1)*T(n, k-2) fi end: for n from 0 to 9 do seq(T(n, k), k=0..9) od;
# Only to check the interpretation as a determinant of a lower Hessenberg matrix:
gen := proc(i, j, n) local ev, tv; ev := irem(j+i, 2) = 0; tv := j < i and not ev;
if j > i + 1 then 0 elif j = i + 1 then -1 elif j <= i and ev then 1
elif tv and i < n then x*(n + 1 - i) - 1 else x fi end:
det := M -> LinearAlgebra:-Determinant(M):
p := (n, k) -> subs(x = k, det(Matrix(n, (i, j) -> gen(i, j, n)))):
for n from 0 to 9 do seq(p(n, k), k = 0..7) od;
-
T[n_, k_] := Sum[Binomial[n, j] Factorial2[j-1] * If[j==0, 1, k^(j/2)], {j, 0, n, 2}];
Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
-
from math import factorial, comb
def oddfactorial(n: int) -> int:
return factorial(2 * n) // (2**n * factorial(n))
def T(n: int, k: int) -> int:
return sum(comb(n, 2 * j) * oddfactorial(j) * k**j for j in range(n + 1))
for n in range(10): print([T(n, k) for k in range(8)])
A293724
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. exp(Sum_{j=1..k} j^2*x^j).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 9, 25, 1, 1, 1, 9, 79, 241, 1, 1, 1, 9, 79, 457, 1041, 1, 1, 1, 9, 79, 841, 5901, 10681, 1, 1, 1, 9, 79, 841, 7821, 66841, 60649, 1, 1, 1, 9, 79, 841, 10821, 118681, 720259, 658785, 1, 1, 1, 9, 79, 841, 10821, 136681, 1782019
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 9, 9, 9, 9, ...
1, 25, 79, 79, 79, ...
1, 241, 457, 841, 841, ...
1, 1041, 5901, 7821, 10821, ...
Showing 1-9 of 9 results.
Comments