cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000321 H_n(-1/2), where H_n(x) is Hermite polynomial of degree n.

Original entry on oeis.org

1, -1, -1, 5, 1, -41, 31, 461, -895, -6481, 22591, 107029, -604031, -1964665, 17669471, 37341149, -567425279, -627491489, 19919950975, 2669742629, -759627879679, 652838174519, 31251532771999, -59976412450835, -1377594095061119, 4256461892701199, 64623242860354751
Offset: 0

Views

Author

Keywords

Comments

Binomial transform gives A067994. Inverse binomial transform gives A062267(n)*(-1)^n. - Vladimir Reshetnikov, Oct 11 2016
The congruence a(n+k) == (-1)^k*a(n) (mod k) holds for all n and k. It follows that for even k the sequence obtained by reducing a(n) modulo k is purely periodic with period a divisor of k, while for odd k the sequence obtained by reducing a(n) modulo k is purely periodic with period a divisor of 2*k. See A047974. - Peter Bala, Apr 10 2023

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 209.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Mathematica
    Table[HermiteH[n, -1/2], {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Table[(-2)^n HypergeometricU[-n/2, 1/2, 1/4], {n, 0, 25}] (* Benedict W. J. Irwin, Oct 17 2017 *)
  • PARI
    N=66;  x='x+O('x^N);
    egf=exp(-x-x^2);  Vec(serlaplace(egf))
    /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    vector(50, n, n--; sum(k=0, n/2, (-1)^(n-k)*k!*binomial(n, k)*binomial(n-k, k))) \\ Altug Alkan, Oct 22 2015
    
  • PARI
    a(n) = polhermite(n, -1/2); \\ Michel Marcus, Oct 12 2016
    
  • Python
    from sympy import hermite
    def a(n): return hermite(n, -1/2) # Indranil Ghosh, May 26 2017
    

Formula

E.g.f.: exp(-x-x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^(n-k)*k!*C(n, k)*C(n-k, k).
a(n) = - a(n-1) - 2*(n-1)*a(n-2), a(0) = 1, a(1) = -1.
a(n) = Sum_{k=0..n} (-1)^(2*n-k)*C(k,n-k)*n!/k!. - Paul Barry, Oct 08 2007, corrected by Altug Alkan, Oct 22 2015
E.g.f.: 1 - x*(1 - E(0) )/(1+x) where E(k) = 1 - (1+x)/(k+1)/(1-x/(x+1/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 18 2013
E.g.f.: -x/Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: 1/(x*Q(0)), where Q(k) = 1 + 1/x + 2*(k+1)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 21 2013
a(n) = (-2)^n * U(-n/2, 1/2, 1/4), where U is the confluent hypergeometric function. - Benedict W. J. Irwin, Oct 17 2017
E.g.f.: Product_{k>=1} (1 + (-x)^k)^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019

Extensions

Formulae and more terms from Vladeta Jovovic, Apr 30 2001

A143507 Triangle of coefficients of x^n*H_n(x + 1/x), where H_n(x) is the Hermite polynomial of order n.

Original entry on oeis.org

1, 2, 0, 2, 4, 0, 6, 0, 4, 8, 0, 12, 0, 12, 0, 8, 16, 0, 16, 0, 12, 0, 16, 0, 16, 32, 0, 0, 0, -40, 0, -40, 0, 0, 0, 32, 64, 0, -96, 0, -240, 0, -280, 0, -240, 0, -96, 0, 64, 128, 0, -448, 0, -672, 0, -560, 0, -560, 0, -672, 0, -448, 0, 128, 256, 0, -1536, 0, -896, 0, 896, 0, 1680, 0, 896, 0, -896, 0, -1536, 0, 256, 512, 0, -4608, 0, 512
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 25 2008

Keywords

Comments

Row sums yield A144141.

Examples

			Triangle begins:
     1;
     2, 0,    2;
     4, 0,    6, 0,    4;
     8, 0,   12, 0,   12, 0,    8;
    16, 0,   16, 0,   12, 0,   16, 0,   16;
    32, 0,    0, 0,  -40, 0,  -40, 0,    0, 0,   32;
    64, 0,  -96, 0, -240, 0, -280, 0, -240, 0,  -96, 0,   64;
   128, 0, -448, 0, -672, 0, -560, 0, -560, 0, -672, 0, -448, 0, 128;
    ... reformatted. - _Franck Maminirina Ramaharo_, Oct 25 2018
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[FullSimplify[x^n*HermiteH[n, x + 1/x]], x], {n,
      0, 10}]//Flatten
  • PARI
    row(n) = Vec(x^n*subst(polhermite(n,x),x,x+1/x));
    for (n=0, 10, print(row(n))); \\ Michel Marcus, Oct 27 2018

Formula

E.g.f.: exp(2*(1 + x^2)*y - x^2*y^2). - Franck Maminirina Ramaharo, Oct 25 2018

Extensions

Edited, new name and offset corrected by Franck Maminirina Ramaharo, Oct 25 2018
Showing 1-2 of 2 results.