A062267
Row sums of (signed) triangle A060821 (Hermite polynomials).
Original entry on oeis.org
1, 2, 2, -4, -20, -8, 184, 464, -1648, -10720, 8224, 230848, 280768, -4978816, -17257600, 104891648, 727511296, -1901510144, -28538404352, 11377556480, 1107214478336, 1759326697472, -42984354695168, -163379084079104
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*(2-x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 08 2018
-
A062267 := proc(n)
HermiteH(n,1) ;
simplify(%) ;
end proc: # R. J. Mathar, Feb 05 2013
-
lst={};Do[p=HermiteH[n,1];AppendTo[lst,p],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
Table[2^n HypergeometricU[-n/2, 1/2, 1], {n, 0, 23}] (* Benedict W. J. Irwin, Oct 17 2017 *)
With[{nmax=50}, CoefficientList[Series[Exp[x*(2-x)], {x,0,nmax}],x]* Range[0, nmax]!] (* G. C. Greubel, Jun 08 2018 *)
-
x='x+O('x^30); Vec(serlaplace(exp(-x*(x-2)))) \\ G. C. Greubel, Jun 08 2018
-
a(n) = polhermite(n,1); \\ Michel Marcus, Jun 09 2018
-
from sympy import hermite, Poly
def a(n): return sum(Poly(hermite(n, x), x).all_coeffs()) # Indranil Ghosh, May 26 2017
A130187
Numerators of rationals r(n) related to the z-sequence of the Sheffer matrix A060821 for Hermite polynomials.
Original entry on oeis.org
1, 3, 5, 105, 189, 3465, 19305, 2027025, 3828825, 130945815, 1249937325, 105411381075, 608142583125, 30494006668125, 412685556908625, 191898783962510625, 372509404162520625, 24627010608522196875
Offset: 0
r(1)=3/4 leads to z(3)=-3/8.
Rationals r(n):
E.g.f. for z-sequence: -2*(exp((x^2)/4)-1)/x = -(1/2)*x - (1/16)*x^3 - (1/192)*x^5 - (1/3072)*x^7 - ...
z-sequence: [0, -1/2, 0, -3/8, 0, -5/8, 0, -105/64, 0, -189/32, 0, ...]
Recurrence, n=4: H(4,0) = 4*(z(1)*(-12) + z(3)*8) = 4*((-1/2)*(-12) + (-3/8)*8) = 4*3 = 12.
Conjecture checks: a(3) = A001147(4)/A000265(4) = 7!!/1 = 1*3*5*7 = 105. a(4) = A001147(5)/A000265(5) = 9!!/5 = 1*3*7*9 = 189. - _Wolfdieter Lang_, Jan 04 2013
-
F:= CoefficientList[Series[-2*(Exp[x^2/4] -1)/x, {x,0,75}], x]*Range[0, 75]!; Table[Numerator[-2*F[[2*n]]], {n, 1, 50}] (* G. C. Greubel, Jul 10 2018 *)
A130188
Denominators of rationals r(n) related to the z-sequence of the Sheffer matrix A060821 for Hermite polynomials.
Original entry on oeis.org
1, 4, 4, 32, 16, 64, 64, 1024, 256, 1024, 1024, 8192, 4096, 16384, 16384, 524288, 65536, 262144, 262144, 2097152, 1048576, 4194304, 4194304, 67108864, 16777216, 67108864, 67108864, 536870912, 268435456, 1073741824
Offset: 0
-
F:= CoefficientList[Series[-2*(Exp[x^2/4] -1)/x, {x,0,75}], x]*Range[0, 75]!; Table[Denominator[-2*F[[2*n]]], {n, 1, 50}] (* G. C. Greubel, Jul 10 2018 *)
A181089
Triangle T(n, k) = A060821(n,k) + A060821(n,n-k), read by rows.
Original entry on oeis.org
2, 2, 2, 2, 0, 2, 8, -12, -12, 8, 28, 0, -96, 0, 28, 32, 120, -160, -160, 120, 32, -56, 0, 240, 0, 240, 0, -56, 128, -1680, -1344, 3360, 3360, -1344, -1680, 128, 1936, 0, -17024, 0, 26880, 0, -17024, 0, 1936, 512, 30240, -9216, -80640, 48384, 48384, -80640, -9216, 30240, 512
Offset: 0
Triangle begins as:
2;
2, 2;
2, 0, 2;
8, -12, -12, 8;
28, 0, -96, 0, 28;
32, 120, -160, -160, 120, 32;
-56, 0, 240, 0, 240, 0, -56;
128, -1680, -1344, 3360, 3360, -1344, -1680, 128;
1936, 0, -17024, 0, 26880, 0, -17024, 0, 1936;
512, 30240, -9216, -80640, 48384, 48384, -80640, -9216, 30240, 512;
-
(* First program *)
p[x_, n_] = HermiteH[n, x] + ExpandAll[x^n*HermiteH[n, 1/x]];
Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 15}]] (* edited by G. C. Greubel, Apr 04 2021 *)
(* Second program *)
A060821[n_, k_]:= If[EvenQ[n-k], (-1)^(Floor[(n-k)/2])*2^k*n!/(k!*(Floor[(n - k)/2]!)), 0];
T[n_, k_]:= A060821[n, k] +A060821[n, n-k];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 04 2021 *)
-
def A060821(n,k): return (-1)^((n-k)//2)*2^k*factorial(n)/(factorial(k)*factorial( (n-k)//2)) if (n-k)%2==0 else 0
def T(n,k): return A060821(n, k) + A060821(n, n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 04 2021
A140873
Triangle T(n, k) = H(n, k+1) - 2*H(n, k) - H(n, k-1), where H(n, k) = A060821(n+3, k), read by rows.
Original entry on oeis.org
-60, -240, -280, 840, -1440, -1200, 3360, 5040, -6720, -4704, -15120, 26880, 26880, -26880, -17024, -60480, -110880, 161280, 129024, -96768, -57600, 332640, -604800, -705600, 806400, 564480, -322560, -184320, 1330560, 2882880, -4435200, -3991680, 3548160, 2280960, -1013760, -563200
Offset: 1
Triangle begins as:
-60;
-240, -280;
840, -1440, -1200;
3360, 5040, -6720, -4704;
-15120, 26880, 26880, -26880, -17024;
-60480, -110880, 161280, 129024, -96768, -57600;
332640, -604800, -705600, 806400, 564480, -322560, -184320;
1330560, 2882880, -4435200, -3991680, 3548160, 2280960, -1013760, -563200;
Cf.
A060821 (coefficients of Hermite polynomial).
-
A060821[n_, k_]:= If[EvenQ[n-k], (-1)^(Floor[(n-k)/2])*(2^k)*n!/(k!*(Floor[(n - k)/2]!)), 0];
T[n_, k_]:= A060821[n+3, k+1] -2*A060821[n+3, k] -A060821[n+3, k-1];
Table[T[n, k], {n, 15}, {k, n}]//Flatten (* corrected by G. C. Greubel, Dec 01 2020 *)
-
def A060821(n,k): return (-1)^((n-k)//2)*2^k*factorial(n)/(factorial(k)*factorial( (n-k)//2)) if (n-k)%2==0 else 0
def T(n,k): return A060821(n+3, k+1) -2*A060821(n+3, k) -A060821(n+3, k-1)
flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 04 2021
A137449
A triangular sequence based on concepts of operations on existing sequences: in this case the H(x,n) ( A060821) traditional Hermite is differentiated twice : p(x,n)=-x^2*H''(x,n)+H(x,n).
Original entry on oeis.org
1, 1, 1, -2, 0, -4, 0, -12, 0, -40, 12, 0, 48, 0, -176, 0, 120, 0, 800, 0, -608, -120, 0, -720, 0, 5280, 0, -1856, 0, -1680, 0, -16800, 0, 25536, 0, -5248, 1680, 0, 13440, 0, -147840, 0, 103936, 0, -14080, 0, 30240, 0, 403200, 0, -919296, 0, 377856, 0, -36352, -30240, 0, -302400, 0, 4435200, 0, -4677120, 0
Offset: 1
{1},
{1, 1},
{-2, 0, -4},
{0, -12, 0, -40},
{12, 0, 48, 0, -176},
{0, 120,0, 800, 0, -608},
{-120, 0, -720, 0, 5280, 0, -1856},
{0, -1680, 0, -16800, 0, 25536, 0, -5248},
{1680, 0, 13440, 0, -147840, 0, 103936, 0, -14080},
{0, 30240, 0, 403200, 0, -919296, 0, 377856, 0, -36352},
{-30240, 0, -302400, 0, 4435200, 0, -4677120,0, 1267200, 0, -91136}
-
Clear[p, x, a] p[x, 0] = 1; p[x, 1] = x + 1; p[x_, n_] := p[x, n] = -x^2*D[HermiteH[n, x], {x, 2}] + HermiteH[n, x]; Table[Expand[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]
A137456
A triangular sequence of coefficients of a partition two types polynomials; of Chebyshev of the first kind polynomials (A053120) and Hermite polynomials (A060821): p(x,n) = T(x,n)*H(x,n).
Original entry on oeis.org
1, 0, 0, 2, 2, 0, -8, 0, 8, 0, 0, 36, 0, -72, 0, 32, 12, 0, -144, 0, 496, 0, -512, 0, 128, 0, 0, 600, 0, -3200, 0, 5280, 0, -3200, 0, 512, 120, 0, -2880, 0, 19200, 0, -47104, 0, 47232, 0, -18432, 0, 2048, 0, 0, 11760, 0, -117600, 0, 385728, 0, -560000, 0, 372736, 0, -100352, 0, 8192
Offset: 1
Triangle begins:
{1},
{0, 0, 2},
{2, 0, -8, 0, 8},
{0, 0, 36, 0, -72, 0, 32},
{12, 0, -144, 0, 496, 0, -512, 0, 128},
{0, 0, 600, 0, -3200, 0, 5280, 0, -3200, 0, 512},
{120, 0, -2880, 0, 19200, 0, -47104, 0, 47232, 0, -18432, 0, 2048},
{0, 0, 11760, 0, -117600, 0, 385728, 0, -560000, 0,372736, 0, -100352, 0, 8192},
...
-
a = Table[CoefficientList[ChebyshevT[n, x]*HermiteH[n, x], x], {n, 0, 10}];
Flatten[a]
A137862
Triangular sequence of coefficients of the expansion of a degenerate partition of Chebyshev U(x,n);A053117 and Hermite H(x,n);A060821 functions: 1) f(x,t)=1/(1-2*x*t+t^2); 2) g(x,t)=Exp[2*x*t-t^2]; to give: p(x,t)=Exp[2*x*t-t^2]/(1-2*x*t+t^2).
Original entry on oeis.org
1, 0, 4, -4, 0, 20, 0, -60, 0, 128, 60, 0, -768, 0, 1040, 0, 1920, 0, -10400, 0, 10432, -1920, 0, 46800, 0, -156480, 0, 125248, 0, -109200, 0, 1095360, 0, -2630208, 0, 1753600, 109200, 0, -4381440, 0, 26302080, 0, -49100800, 0, 28057856, 0, 9858240, 0, -157812480, 0, 662860800, 0, -1010082816, 0
Offset: 1
{1},
{0, 4},
{-4, 0, 20},
{0, -60, 0, 128},
{60, 0, -768, 0,1040},
{0, 1920, 0, -10400, 0, 10432},
{-1920, 0, 46800, 0, -156480, 0, 125248},
{0, -109200, 0, 1095360, 0, -2630208, 0, 1753600},
{109200, 0, -4381440, 0, 26302080, 0, -49100800, 0, 28057856},
{0, 9858240, 0, -157812480, 0, 662860800, 0, -1010082816, 0, 505041920}, {-9858240, 0, 591796800, 0, -5523840000, 0, 17676449280, 0, -22726886400, 0, 10100839424}
-
Clear[p, b, a]; p[t_] = FullSimplify[(1/(1 - 2*x*t + t^2))*Exp[2*x*t - t^2]]; Table[ ExpandAll[n!*SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[n!*SeriesCoefficient[Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
A139583
A triangle of coefficients from Hermite polynomials A060821 as {x,y},{y,z},{z,x} binomials reduced to x: f(x,y,n)=Sum[Coefficients(H(x,n))(i)*x^i*y^(n-1),{i,0,n}]; p(x,y,z)=f(x,y,n)+f(y,z,n)+f(z,x,n).
Original entry on oeis.org
3, 2, 4, -2, 0, 8, -4, -24, 0, 16, 4, 0, -96, 0, 32, -8, 240, 0, -320, 0, 64, -56, 0, 1440, 0, -960, 0, 128, 464, -3360, 0, 6720, 0, -2688, 0, 256, 1712, 0, -26880, 0, 26880, 0, -7168, 0, 512, -10720, 60480, 0, -161280, 0, 96768, 0, -18432, 0, 1024, -52256, 0, 604800, 0, -806400, 0, 322560, 0, -46080, 0, 2048
Offset: 1
{3},
{2, 4},
{-2, 0, 8},
{-4, -24, 0, 16},
{4, 0, -96, 0, 32},
{-8, 240, 0, -320, 0, 64},
{-56, 0,1440, 0, -960, 0, 128},
{464, -3360, 0, 6720, 0, -2688, 0, 256},
{1712, 0, -26880, 0, 26880, 0, -7168, 0, 512},
{-10720, 60480, 0, -161280, 0, 96768, 0, -18432, 0, 1024},
{-52256, 0, 604800, 0, -806400, 0, 322560, 0, -46080, 0, 2048}
-
Clear[f, x, n] f[x_, y_, n_] := Sum[CoefficientList[HermiteH[n, x], x][[i + 1]]*x^i*y^(n - i), {i, 0, Length[CoefficientList[HermiteH[n,x], x]] - 1}]; Table[ExpandAll[f[x, y, n] + f[y, z, n] + f[x, z, n]], {n, 0, 10}]; a = Table[CoefficientList[ExpandAll[f[x, y, n] + f[y, z, n] + f[ x, z, n]] /. y -> 1 /. z -> 1, x], {n, 0, 10}]; Flatten[a]
A000898
a(n) = 2*(a(n-1) + (n-1)*a(n-2)) for n >= 2 with a(0) = 1.
Original entry on oeis.org
1, 2, 6, 20, 76, 312, 1384, 6512, 32400, 168992, 921184, 5222208, 30710464, 186753920, 1171979904, 7573069568, 50305536256, 342949298688, 2396286830080, 17138748412928, 125336396368896, 936222729254912, 7136574106003456, 55466948299223040, 439216305474605056, 3540846129311916032
Offset: 0
G.f. = 1 + 2*x + 6*x^2 + 20*x^3 + 76*x^4 + 312*x^5 + 1384*x^6 + 6512*x^7 + ...
The a(3) = 20 domino tableaux:
1 1 2 2 3 3
.
1 2 2 3 3
1
.
1 2 3 3 1 1 3 3 1 1 2 2
1 2 2 2 3 3
.
1 1 3 3 1 1 2 2
2 3
2 3
.
1 2 3 1 2 2 1 1 3
1 2 3 1 3 3 2 2 3
.
1 3 3 1 2 2
1 1
2 3
2 3
.
1 2 1 1 1 1
1 2 2 3 2 2
3 3 2 3 3 3
.
1 3 1 2 1 1
1 3 1 2 2 2
2 3 3
2 3 3
.
1 1
2
2
3
3
.
1
1
2
2
3
3 - _Gus Wiseman_, Feb 25 2018
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.1.4 Exer. 31.
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..200
- Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 10.
- Arvind Ayyer, Hiranya Kishore Dey, and Digjoy Paul, How large is the character degree sum compared to the character table sum for a finite group?, arXiv:2406.06036 [math.RT], 2024. See p. 10.
- C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions for generating trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
- Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
- R. A. Brualdi, Shi-Mie Ma, Enumeration of involutions by descents and symmetric matrices, Eur. J. Combin. 43 (2015) 220-228
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- C.-O. Chow, Counting involutory, unimodal, and alternating signed permutations, Discr. Math. 306 (2006), 2222-2228.
- R. Donaghey, Binomial self-inverse sequences and tangent coefficients, J. Combin. Theory, Series A, 21 (1976), 155-163.
- Eric S. Egge, Restricted symmetric permutations, Ann. Combin., 11 (2007), 405-434.
- Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From _N. J. A. Sloane_, Sep 17 2012
- T. Halverson and M. Reeks, Gelfand Models for Diagram Algebras, arXiv:1302.6150 [math.RT], 2013-2014.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
- Yen-chi R. Lin, Asymptotic Formula for Symmetric Involutions, arXiv:1310.0988 [math.CO], 2013.
- E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 221.
- E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
- J. Riordan, Letter to N. J. A. Sloane, Feb 03 1975 (with notes by njas)
- D. P. Roberts and A. Venkatesh, Hurwitz monodromy and full number fields, 2014.
- Index entries for sequences related to Hermite polynomials
Cf.
A000085,
A000712,
A004003,
A066051,
A099390,
A100861,
A135401,
A138178,
A153452,
A297388,
A299699,
A299926,
A300056,
A300060.
-
a000898 n = a000898_list !! n
a000898_list = 1 : 2 : (map (* 2) $
zipWith (+) (tail a000898_list) (zipWith (*) [1..] a000898_list))
-- Reinhard Zumkeller, Oct 10 2011
-
# For Maple program see A000903.
seq(simplify((-I)^n*HermiteH(n, I)), n=0..25); # Peter Luschny, Oct 23 2015
-
a[n_] := Sum[ 2^k*StirlingS1[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 17 2011, after Vladeta Jovovic *)
RecurrenceTable[{a[0]==1,a[1]==2,a[n]==2(a[n-1]+(n-1)a[n-2])},a,{n,30}] (* Harvey P. Dale, Aug 04 2012 *)
Table[Abs[HermiteH[n, I]], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
a[ n_] := Sum[ 2^(n - 2 k) n! / (k! (n - 2 k)!), {k, 0, n/2}]; (* Michael Somos, Oct 23 2015 *)
-
makelist((%i)^n*hermite(n,-%i),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
-
{a(n) = if( n<0, 0, n! * polcoeff( exp(2*x + x^2 + x * O(x^n)), n))}; /* Michael Somos, Feb 08 2004 */
-
{a(n) = if( n<2, max(0, n+1), 2*a(n-1) + (2*n - 2) * a(n-2))}; /* Michael Somos, Feb 08 2004 */
-
my(x='x+O('x^66)); Vec(serlaplace(exp(2*x+x^2))) \\ Joerg Arndt, Oct 04 2013
-
{a(n) = sum(k=0, n\2, 2^(n - 2*k) * n! / (k! * (n - 2*k)!))}; /* Michael Somos, Oct 23 2015 */
More terms from Larry Reeves (larryr(AT)acm.org), Feb 21 2001
Showing 1-10 of 30 results.
Comments