cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A062267 Row sums of (signed) triangle A060821 (Hermite polynomials).

Original entry on oeis.org

1, 2, 2, -4, -20, -8, 184, 464, -1648, -10720, 8224, 230848, 280768, -4978816, -17257600, 104891648, 727511296, -1901510144, -28538404352, 11377556480, 1107214478336, 1759326697472, -42984354695168, -163379084079104
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x*(2-x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 08 2018
  • Maple
    A062267 := proc(n)
        HermiteH(n,1) ;
        simplify(%) ;
    end proc: # R. J. Mathar, Feb 05 2013
  • Mathematica
    lst={};Do[p=HermiteH[n,1];AppendTo[lst,p],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
    Table[2^n HypergeometricU[-n/2, 1/2, 1], {n, 0, 23}] (* Benedict W. J. Irwin, Oct 17 2017 *)
    With[{nmax=50}, CoefficientList[Series[Exp[x*(2-x)], {x,0,nmax}],x]* Range[0, nmax]!] (* G. C. Greubel, Jun 08 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace(exp(-x*(x-2)))) \\ G. C. Greubel, Jun 08 2018
    
  • PARI
    a(n) = polhermite(n,1); \\ Michel Marcus, Jun 09 2018
    
  • Python
    from sympy import hermite, Poly
    def a(n): return sum(Poly(hermite(n, x), x).all_coeffs()) # Indranil Ghosh, May 26 2017
    

Formula

a(n) = Sum_{m=0..n} A060821(n, m) = H(n, 1), with the Hermite polynomials H(n, x).
E.g.f.: exp(-x*(x-2)).
a(n) = 2*(a(n - 1) - (n - 1)*a(n - 2)). - Roger L. Bagula, Sep 11 2006
a(n) = 2^n * U(-n/2, 1/2, 1), where U is the confluent hypergeometric function. - Benedict W. J. Irwin, Oct 17 2017
E.g.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(mu(k)/k). - Ilya Gutkovskiy, May 26 2019

A130187 Numerators of rationals r(n) related to the z-sequence of the Sheffer matrix A060821 for Hermite polynomials.

Original entry on oeis.org

1, 3, 5, 105, 189, 3465, 19305, 2027025, 3828825, 130945815, 1249937325, 105411381075, 608142583125, 30494006668125, 412685556908625, 191898783962510625, 372509404162520625, 24627010608522196875
Offset: 0

Views

Author

Wolfdieter Lang Jun 01 2007

Keywords

Comments

The denominators are A130188.
The z-sequence for the Sheffer matrix (see the W. Lang link under A006233) A060821(n,m) (coefficients of Hermite polynomials) is z(2*k)=0 and z(2*k+1) = -r(k)/2, k >= 0, with r(n) := a(n)/A130188(n).
The recurrence for the entries of the first (m=0) column of the Sheffer triangle A006233(n,m)=:H(n,m) is H(0,0):=1, H(n,0) = n*Sum_{m=0..n-1} z(m)*H(n-1, m), n >= 1.
The e.g.f. for the z-sequence is -2*(exp((x^2)/4)-1)/x.

Examples

			r(1)=3/4 leads to z(3)=-3/8.
Rationals r(n):
E.g.f. for z-sequence: -2*(exp((x^2)/4)-1)/x = -(1/2)*x - (1/16)*x^3 - (1/192)*x^5 - (1/3072)*x^7 - ...
z-sequence: [0, -1/2, 0, -3/8, 0, -5/8, 0, -105/64, 0, -189/32, 0, ...]
Recurrence, n=4: H(4,0) = 4*(z(1)*(-12) + z(3)*8) = 4*((-1/2)*(-12) + (-3/8)*8) = 4*3 = 12.
Conjecture checks: a(3) = A001147(4)/A000265(4) = 7!!/1 = 1*3*5*7 = 105. a(4) = A001147(5)/A000265(5) = 9!!/5 = 1*3*7*9 = 189. - _Wolfdieter Lang_, Jan 04 2013
		

Programs

  • Mathematica
    F:= CoefficientList[Series[-2*(Exp[x^2/4] -1)/x, {x,0,75}], x]*Range[0, 75]!; Table[Numerator[-2*F[[2*n]]], {n, 1, 50}] (* G. C. Greubel, Jul 10 2018 *)

Formula

a(n) = numerator(r(n)), n >= 0. r(n):=-2*z(2*n+1) (in lowest terms). The e.g.f. of z(n) is given above.
Conjecture: a(n) = A001147(n+1)/A000265(n+1), n >= 0. (Motivated to reconsider this sequence by an e-mail of Thomas Olson.) - Wolfdieter Lang, Jan 04 2013

A130188 Denominators of rationals r(n) related to the z-sequence of the Sheffer matrix A060821 for Hermite polynomials.

Original entry on oeis.org

1, 4, 4, 32, 16, 64, 64, 1024, 256, 1024, 1024, 8192, 4096, 16384, 16384, 524288, 65536, 262144, 262144, 2097152, 1048576, 4194304, 4194304, 67108864, 16777216, 67108864, 67108864, 536870912, 268435456, 1073741824
Offset: 0

Views

Author

Wolfdieter Lang Jun 01 2007

Keywords

Comments

Numerators are A130187.
See A130187 for details on r(n):= A130187(n)/a(n) and the corresponding z-sequence for the Hermite matrix A060821.

Programs

  • Mathematica
    F:= CoefficientList[Series[-2*(Exp[x^2/4] -1)/x, {x,0,75}], x]*Range[0, 75]!; Table[Denominator[-2*F[[2*n]]], {n, 1, 50}] (* G. C. Greubel, Jul 10 2018 *)

Formula

a(n) = denominator(-2*z(2*n+1)), n>=0, with the e.g.f. for z(n) given in A130187.

A181089 Triangle T(n, k) = A060821(n,k) + A060821(n,n-k), read by rows.

Original entry on oeis.org

2, 2, 2, 2, 0, 2, 8, -12, -12, 8, 28, 0, -96, 0, 28, 32, 120, -160, -160, 120, 32, -56, 0, 240, 0, 240, 0, -56, 128, -1680, -1344, 3360, 3360, -1344, -1680, 128, 1936, 0, -17024, 0, 26880, 0, -17024, 0, 1936, 512, 30240, -9216, -80640, 48384, 48384, -80640, -9216, 30240, 512
Offset: 0

Views

Author

Roger L. Bagula, Oct 02 2010

Keywords

Examples

			Triangle begins as:
     2;
     2,     2;
     2,     0,      2;
     8,   -12,    -12,      8;
    28,     0,    -96,      0,      28;
    32,   120,   -160,   -160,     120,    32;
   -56,     0,    240,      0,     240,     0,     -56;
   128, -1680,  -1344,   3360,    3360, -1344,   -1680,   128;
  1936,     0, -17024,      0,   26880,     0,  -17024,     0,   1936;
   512, 30240,  -9216, -80640,   48384, 48384,  -80640, -9216,  30240, 512;
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[x_, n_] = HermiteH[n, x] + ExpandAll[x^n*HermiteH[n, 1/x]];
    Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 15}]] (* edited by G. C. Greubel, Apr 04 2021 *)
    (* Second program *)
    A060821[n_, k_]:= If[EvenQ[n-k], (-1)^(Floor[(n-k)/2])*2^k*n!/(k!*(Floor[(n - k)/2]!)), 0];
    T[n_, k_]:= A060821[n, k] +A060821[n, n-k];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 04 2021 *)
  • Sage
    def A060821(n,k): return (-1)^((n-k)//2)*2^k*factorial(n)/(factorial(k)*factorial( (n-k)//2)) if (n-k)%2==0 else 0
    def T(n,k): return A060821(n, k) + A060821(n, n-k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 04 2021

Formula

T(n, k) = coefficients [x^k] of the polynomial HermiteH(n,x) + x^n*HermiteH(n,1/x).
T(n, k) = A060821(n,k) + A060821(n,n-k).
Sum_{k=0..n} T(n, k) = 2*A062267(n).

A140873 Triangle T(n, k) = H(n, k+1) - 2*H(n, k) - H(n, k-1), where H(n, k) = A060821(n+3, k), read by rows.

Original entry on oeis.org

-60, -240, -280, 840, -1440, -1200, 3360, 5040, -6720, -4704, -15120, 26880, 26880, -26880, -17024, -60480, -110880, 161280, 129024, -96768, -57600, 332640, -604800, -705600, 806400, 564480, -322560, -184320, 1330560, 2882880, -4435200, -3991680, 3548160, 2280960, -1013760, -563200
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Jul 21 2008

Keywords

Examples

			Triangle begins as:
      -60;
     -240,    -280;
      840,   -1440,    -1200;
     3360,    5040,    -6720,    -4704;
   -15120,   26880,    26880,   -26880,  -17024;
   -60480, -110880,   161280,   129024,  -96768,  -57600;
   332640, -604800,  -705600,   806400,  564480, -322560,  -184320;
  1330560, 2882880, -4435200, -3991680, 3548160, 2280960, -1013760, -563200;
		

Crossrefs

Cf. A060821 (coefficients of Hermite polynomial).

Programs

  • Mathematica
    A060821[n_, k_]:= If[EvenQ[n-k], (-1)^(Floor[(n-k)/2])*(2^k)*n!/(k!*(Floor[(n - k)/2]!)), 0];
    T[n_, k_]:= A060821[n+3, k+1] -2*A060821[n+3, k] -A060821[n+3, k-1];
    Table[T[n, k], {n, 15}, {k, n}]//Flatten (* corrected by G. C. Greubel, Dec 01 2020 *)
  • Sage
    def A060821(n,k): return (-1)^((n-k)//2)*2^k*factorial(n)/(factorial(k)*factorial( (n-k)//2)) if (n-k)%2==0 else 0
    def T(n,k): return A060821(n+3, k+1) -2*A060821(n+3, k) -A060821(n+3, k-1)
    flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Apr 04 2021

Formula

T(n, k) = H(n, k+1) - 2*H(n, k) - H(n, k-1), where H(n, k) = A060821(n+3, k).

Extensions

Name edited by G. C. Greubel, Dec 01 2020
Edited by G. C. Greubel, Apr 04 2021

A137449 A triangular sequence based on concepts of operations on existing sequences: in this case the H(x,n) ( A060821) traditional Hermite is differentiated twice : p(x,n)=-x^2*H''(x,n)+H(x,n).

Original entry on oeis.org

1, 1, 1, -2, 0, -4, 0, -12, 0, -40, 12, 0, 48, 0, -176, 0, 120, 0, 800, 0, -608, -120, 0, -720, 0, 5280, 0, -1856, 0, -1680, 0, -16800, 0, 25536, 0, -5248, 1680, 0, 13440, 0, -147840, 0, 103936, 0, -14080, 0, 30240, 0, 403200, 0, -919296, 0, 377856, 0, -36352, -30240, 0, -302400, 0, 4435200, 0, -4677120, 0
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Apr 18 2008

Keywords

Comments

Row sums are:
{1, 2, -6, -52, -116, 312, 2584, 1808, -42864, -144352, 601504};
As an operator algebra like an Energy Hamiltonian:
e(n)*H(x,n)=p(x,n)/x^2
The relative energy of the row sums goes up much faster than in the Chebyshev
of the first kind.

Examples

			{1},
{1, 1},
{-2, 0, -4},
{0, -12, 0, -40},
{12, 0, 48, 0, -176},
{0, 120,0, 800, 0, -608},
{-120, 0, -720, 0, 5280, 0, -1856},
{0, -1680, 0, -16800, 0, 25536, 0, -5248},
{1680, 0, 13440, 0, -147840, 0, 103936, 0, -14080},
{0, 30240, 0, 403200, 0, -919296, 0, 377856, 0, -36352},
{-30240, 0, -302400, 0, 4435200, 0, -4677120,0, 1267200, 0, -91136}
		

Programs

  • Mathematica
    Clear[p, x, a] p[x, 0] = 1; p[x, 1] = x + 1; p[x_, n_] := p[x, n] = -x^2*D[HermiteH[n, x], {x, 2}] + HermiteH[n, x]; Table[Expand[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a]

Formula

p(x,n)=-x^2*H''(x,n)+H(x,n)

A137456 A triangular sequence of coefficients of a partition two types polynomials; of Chebyshev of the first kind polynomials (A053120) and Hermite polynomials (A060821): p(x,n) = T(x,n)*H(x,n).

Original entry on oeis.org

1, 0, 0, 2, 2, 0, -8, 0, 8, 0, 0, 36, 0, -72, 0, 32, 12, 0, -144, 0, 496, 0, -512, 0, 128, 0, 0, 600, 0, -3200, 0, 5280, 0, -3200, 0, 512, 120, 0, -2880, 0, 19200, 0, -47104, 0, 47232, 0, -18432, 0, 2048, 0, 0, 11760, 0, -117600, 0, 385728, 0, -560000, 0, 372736, 0, -100352, 0, 8192
Offset: 1

Views

Author

Roger L. Bagula, Apr 18 2008

Keywords

Comments

Row sums are:
{1, 2, 2, -4, -20, -8, 184, 464, -1648, -10720, 8224}
In real quantum mechanical 2 dimensional orthogonal partitions it would be:
p(x,y,n,m)=T(x,n)*H(y,m).
Here I have made x=y and n=m to get a new sort of polynomial with an odd number of vector coefficients.
The traditional Schoedinger wave mechanics solution of hydrogen is a partition of four (not two dimensions): wave_function=Bessel(r,n)*Legendre(theta,l)*Fourier(phi,m)*Spin(t,s).

Examples

			Triangle begins:
  {1},
  {0, 0, 2},
  {2, 0, -8, 0, 8},
  {0, 0, 36, 0, -72, 0, 32},
  {12, 0, -144, 0, 496, 0, -512, 0, 128},
  {0, 0, 600, 0, -3200, 0, 5280, 0, -3200, 0, 512},
  {120, 0, -2880, 0, 19200, 0, -47104, 0, 47232, 0, -18432, 0, 2048},
  {0, 0, 11760, 0, -117600, 0, 385728, 0, -560000, 0,372736, 0, -100352, 0, 8192},
  ...
		

Crossrefs

Programs

  • Mathematica
    a = Table[CoefficientList[ChebyshevT[n, x]*HermiteH[n, x], x], {n, 0, 10}];
    Flatten[a]

Formula

p(x,n) = T(x,n)*H(x,n).

A137862 Triangular sequence of coefficients of the expansion of a degenerate partition of Chebyshev U(x,n);A053117 and Hermite H(x,n);A060821 functions: 1) f(x,t)=1/(1-2*x*t+t^2); 2) g(x,t)=Exp[2*x*t-t^2]; to give: p(x,t)=Exp[2*x*t-t^2]/(1-2*x*t+t^2).

Original entry on oeis.org

1, 0, 4, -4, 0, 20, 0, -60, 0, 128, 60, 0, -768, 0, 1040, 0, 1920, 0, -10400, 0, 10432, -1920, 0, 46800, 0, -156480, 0, 125248, 0, -109200, 0, 1095360, 0, -2630208, 0, 1753600, 109200, 0, -4381440, 0, 26302080, 0, -49100800, 0, 28057856, 0, 9858240, 0, -157812480, 0, 662860800, 0, -1010082816, 0
Offset: 1

Views

Author

Roger L. Bagula, Apr 29 2008

Keywords

Comments

Row sums are:
{1, 4, 16, 68, 332, 1952, 13648, 109552, 986896, 9865664, 108500864};

Examples

			{1},
{0, 4},
{-4, 0, 20},
{0, -60, 0, 128},
{60, 0, -768, 0,1040},
{0, 1920, 0, -10400, 0, 10432},
{-1920, 0, 46800, 0, -156480, 0, 125248},
{0, -109200, 0, 1095360, 0, -2630208, 0, 1753600},
{109200, 0, -4381440, 0, 26302080, 0, -49100800, 0, 28057856},
{0, 9858240, 0, -157812480, 0, 662860800, 0, -1010082816, 0, 505041920}, {-9858240, 0, 591796800, 0, -5523840000, 0, 17676449280, 0, -22726886400, 0, 10100839424}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, b, a]; p[t_] = FullSimplify[(1/(1 - 2*x*t + t^2))*Exp[2*x*t - t^2]]; Table[ ExpandAll[n!*SeriesCoefficient[Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[n!*SeriesCoefficient[Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]

Formula

p(x,t)=Exp[2*x*t-t^2]/(1-2*x*t+t^2)=Sum(P(x,n)*t^n/n!,{n,0,Infinity}); out_n,m=n!*Coefficients(P(x,n)).

A139583 A triangle of coefficients from Hermite polynomials A060821 as {x,y},{y,z},{z,x} binomials reduced to x: f(x,y,n)=Sum[Coefficients(H(x,n))(i)*x^i*y^(n-1),{i,0,n}]; p(x,y,z)=f(x,y,n)+f(y,z,n)+f(z,x,n).

Original entry on oeis.org

3, 2, 4, -2, 0, 8, -4, -24, 0, 16, 4, 0, -96, 0, 32, -8, 240, 0, -320, 0, 64, -56, 0, 1440, 0, -960, 0, 128, 464, -3360, 0, 6720, 0, -2688, 0, 256, 1712, 0, -26880, 0, 26880, 0, -7168, 0, 512, -10720, 60480, 0, -161280, 0, 96768, 0, -18432, 0, 1024, -52256, 0, 604800, 0, -806400, 0, 322560, 0, -46080, 0, 2048
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Jun 11 2008

Keywords

Comments

Row sums are:
{3, 6, 6, -12, -60, -24, 552, 1392, -4944, -32160, 24672}
Implicit surface of:
f[x_, y_, z_] = 128 x^6 - 480 x^4 y^2 + 720 x^2 y^4 - 56 y^6 - 480 x^4 z^2 - 480y^4 z^2 + 720 x^2 z^4 + 720 y^2 z^4 - 240 z^6 - 1
has twelve horns off the main body ( more than the Chebyshev at the same level).

Examples

			{3},
{2, 4},
{-2, 0, 8},
{-4, -24, 0, 16},
{4, 0, -96, 0, 32},
{-8, 240, 0, -320, 0, 64},
{-56, 0,1440, 0, -960, 0, 128},
{464, -3360, 0, 6720, 0, -2688, 0, 256},
{1712, 0, -26880, 0, 26880, 0, -7168, 0, 512},
{-10720, 60480, 0, -161280, 0, 96768, 0, -18432, 0, 1024},
{-52256, 0, 604800, 0, -806400, 0, 322560, 0, -46080, 0, 2048}
		

Crossrefs

Cf. A060821.

Programs

  • Mathematica
    Clear[f, x, n] f[x_, y_, n_] := Sum[CoefficientList[HermiteH[n, x], x][[i + 1]]*x^i*y^(n - i), {i, 0, Length[CoefficientList[HermiteH[n,x], x]] - 1}]; Table[ExpandAll[f[x, y, n] + f[y, z, n] + f[x, z, n]], {n, 0, 10}]; a = Table[CoefficientList[ExpandAll[f[x, y, n] + f[y, z, n] + f[ x, z, n]] /. y -> 1 /. z -> 1, x], {n, 0, 10}]; Flatten[a]

Formula

f(x,y,n)=Sum[Coefficients(H(x,n))(i)*x^i*y^(n-1),{i,0,n}]; p(x,y,z)=f(x,y,n)+f(y,z,n)+f(z,x,n); Out_n,m=Coefficients(P(x,1,1,n).

A000898 a(n) = 2*(a(n-1) + (n-1)*a(n-2)) for n >= 2 with a(0) = 1.

Original entry on oeis.org

1, 2, 6, 20, 76, 312, 1384, 6512, 32400, 168992, 921184, 5222208, 30710464, 186753920, 1171979904, 7573069568, 50305536256, 342949298688, 2396286830080, 17138748412928, 125336396368896, 936222729254912, 7136574106003456, 55466948299223040, 439216305474605056, 3540846129311916032
Offset: 0

Views

Author

Keywords

Comments

Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
Also the value of the n-th derivative of exp(x^2) evaluated at 1. - N. Calkin, Apr 22 2010
For n >= 1, a(n) is also the sum of the degrees of the irreducible representations of the group of n X n signed permutation matrices (described in sequence A066051). The similar sum for the "ordinary" symmetric group S_n is in sequence A000085. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 12 2002
It appears that this is also the number of permutations of 1, 2, ..., n+1 such that each term (after the first) is within 2 of some preceding term. Verified for n+1 <= 6. E.g., a(4) = 20 because of the 24 permutations of 1, 2, 3, 4, the only ones not permitted are 1, 4, 2, 3; 1, 4, 3, 2; 4, 1, 2, 3; and 4, 1, 3, 2. - Gerry Myerson, Aug 06 2003
Hankel transform is A108400. - Paul Barry, Feb 11 2008
From Emeric Deutsch, Jun 19 2010: (Start)
Number of symmetric involutions of [2n]. Example: a(2)=6 because we have 1234, 2143, 1324, 3412, 4231, and 4321. See the Egge reference, pp. 419-420.
Number of symmetric involutions of [2n+1]. Example: a(2)=6 because we have 12345, 14325, 21354, 45312, 52341, and 54321. See the Egge reference, pp. 419-420.
(End)
Binomial convolution of sequence A000085: a(n) = Sum_{k=0..n} binomial(n,k)*A000085(k)*A000085(n-k). - Emanuele Munarini, Mar 02 2016
The sequence can be obtained from the infinite product of 2 X 2 matrices [(1,N); (1,1)] by extracting the upper left terms, where N = (1, 3, 5, ...), the odd integers. - Gary W. Adamson, Jul 28 2016
Apparently a(n) is the number of standard domino tableaux of size 2n, where a domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. - Gus Wiseman, Feb 25 2018

Examples

			G.f. = 1 + 2*x + 6*x^2 + 20*x^3 + 76*x^4 + 312*x^5 + 1384*x^6 + 6512*x^7 + ...
The a(3) = 20 domino tableaux:
1 1 2 2 3 3
.
1 2 2 3 3
1
.
1 2 3 3   1 1 3 3   1 1 2 2
1 2       2 2       3 3
.
1 1 3 3   1 1 2 2
2         3
2         3
.
1 2 3   1 2 2   1 1 3
1 2 3   1 3 3   2 2 3
.
1 3 3   1 2 2
1       1
2       3
2       3
.
1 2   1 1   1 1
1 2   2 3   2 2
3 3   2 3   3 3
.
1 3   1 2   1 1
1 3   1 2   2 2
2     3     3
2     3     3
.
1 1
2
2
3
3
.
1
1
2
2
3
3 - _Gus Wiseman_, Feb 25 2018
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.1.4 Exer. 31.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000898 n = a000898_list !! n
    a000898_list = 1 : 2 : (map (* 2) $
       zipWith (+) (tail a000898_list) (zipWith (*) [1..] a000898_list))
    -- Reinhard Zumkeller, Oct 10 2011
    
  • Maple
    # For Maple program see A000903.
    seq(simplify((-I)^n*HermiteH(n, I)), n=0..25); # Peter Luschny, Oct 23 2015
  • Mathematica
    a[n_] := Sum[ 2^k*StirlingS1[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 17 2011, after Vladeta Jovovic *)
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==2(a[n-1]+(n-1)a[n-2])},a,{n,30}] (* Harvey P. Dale, Aug 04 2012 *)
    Table[Abs[HermiteH[n, I]], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
    a[ n_] := Sum[ 2^(n - 2 k) n! / (k! (n - 2 k)!), {k, 0, n/2}]; (* Michael Somos, Oct 23 2015 *)
  • Maxima
    makelist((%i)^n*hermite(n,-%i),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp(2*x + x^2 + x * O(x^n)), n))}; /* Michael Somos, Feb 08 2004 */
    
  • PARI
    {a(n) = if( n<2, max(0, n+1), 2*a(n-1) + (2*n - 2) * a(n-2))}; /* Michael Somos, Feb 08 2004 */
    
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(2*x+x^2))) \\ Joerg Arndt, Oct 04 2013
    
  • PARI
    {a(n) = sum(k=0, n\2, 2^(n - 2*k) * n! / (k! * (n - 2*k)!))}; /* Michael Somos, Oct 23 2015 */
    

Formula

a(n) = Sum_{m=0..n} |A060821(n,m)| = H(n,-i)*i^n, with the Hermite polynomials H(n,x); i.e., these are row sums of the unsigned triangle A060821.
E.g.f.: exp(x*(x + 2)).
a(n) = 2 * A000902(n) for n >= 1.
a(n) = Sum_{k=0..n} binomial(n,2k)*binomial(2k,k)*k!*2^(n-2k). - N. Calkin, Apr 22 2010
Binomial transform of A047974. - Paul Barry, May 09 2003
a(n) = Sum_{k=0..n} Stirling1(n, k)*2^k*Bell(k). - Vladeta Jovovic, Oct 01 2003
From Paul Barry, Aug 29 2005: (Start)
a(n) = Sum_{k=0..floor(n/2)} A001498(n-k, k) * 2^(n-k).
a(n) = Sum_{k=0..n} A001498((n+k)/2, (n-k)/2) * 2^((n+k)/2) * (1+(-1)^(n-k))/2. (End)
For asymptotics, see the Robinson paper. [This is disputed by Yen-chi R. Lin. See below, Sep 30 2013.]
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * C(n,2*k) * (2*k)!/k!. - Paul Barry, Feb 11 2008
G.f.: 1/(1 - 2*x - 2*x^2/(1 - 2*x - 4*x^2/(1 - 2*x - 6*x^2/(1 - 2*x - 8*x^2/(1 - ... (continued fraction). - Paul Barry, Feb 25 2010
E.g.f.: exp(x^2 + 2*x) = Q(0); Q(k) = 1 + (x^2 + 2*x)/(2*k + 1 - (x^2 + 2*x)*(2*k + 1)/((x^2 + 2*x) + (2*k + 2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
G.f.: 1/Q(0), where Q(k) = 1 + 2*x*k - x - x/(1 - 2*x*(k + 1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
a(n) = (2*n/e)^(n/2) * exp(sqrt(2*n)) / sqrt(2*e) * (1 + sqrt(2/n)/3 + O(n^(-1))). - Yen-chi R. Lin, Sep 30 2013
0 = a(n)*(2*a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n >= 0. - Michael Somos, Oct 23 2015
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k)*B(n, k), where B are the Bessel numbers A100861. - Peter Luschny, Jun 04 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 21 2001
Initial condition a(0)=1 added to definition by Jon E. Schoenfield, Oct 01 2013
More terms from Joerg Arndt, Oct 04 2013
Showing 1-10 of 30 results. Next