A060821
Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.
Original entry on oeis.org
1, 0, 2, -2, 0, 4, 0, -12, 0, 8, 12, 0, -48, 0, 16, 0, 120, 0, -160, 0, 32, -120, 0, 720, 0, -480, 0, 64, 0, -1680, 0, 3360, 0, -1344, 0, 128, 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256, 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512, -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024
Offset: 0
[1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
Triangle starts:
1;
0, 2;
-2, 0, 4;
0, -12, 0, 8;
12, 0, -48, 0, 16;
0, 120, 0, -160, 0, 32;
-120, 0, 720, 0, -480, 0, 64;
0, -1680, 0, 3360, 0, -1344, 0, 128;
1680, 0, -13440, 0, 13440, 0, -3584, 0, 256;
0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512;
-30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024;
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.
- T. D. Noe, Rows n=0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 801.
- Taekyun Kim and Dae San Kim, A note on Hermite polynomials, arXiv:1602.04096 [math.NT], 2016.
- Alexander Minakov, Question about integral of product of four Hermite polynomials integrated with squared weight, arXiv:1911.03942 [math.CO], 2019.
- Wikipedia, Hermite polynomials.
- Index entries for sequences related to Hermite polynomials.
Without initial zeros, same as
A059343.
-
with(orthopoly):for n from 0 to 10 do H(n,x):od;
T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
# Alternative:
T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
(T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
-
Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* Jean-François Alcover, Jan 18 2012 *)
-
for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ Charles R Greathouse IV, Jun 20 2012
-
from sympy import hermite, Poly, symbols
x = symbols('x')
def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
-
def Trow(n: int) -> list[int]:
row: list[int] = [0] * (n + 1); row[n] = 2**n
for k in range(n - 2, -1, -2):
row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
return row # Peter Luschny, Jan 08 2023
A000321
H_n(-1/2), where H_n(x) is Hermite polynomial of degree n.
Original entry on oeis.org
1, -1, -1, 5, 1, -41, 31, 461, -895, -6481, 22591, 107029, -604031, -1964665, 17669471, 37341149, -567425279, -627491489, 19919950975, 2669742629, -759627879679, 652838174519, 31251532771999, -59976412450835, -1377594095061119, 4256461892701199, 64623242860354751
Offset: 0
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 209.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-x-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
-
Table[HermiteH[n, -1/2], {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Jun 15 2009 *)
Table[(-2)^n HypergeometricU[-n/2, 1/2, 1/4], {n, 0, 25}] (* Benedict W. J. Irwin, Oct 17 2017 *)
-
N=66; x='x+O('x^N);
egf=exp(-x-x^2); Vec(serlaplace(egf))
/* Joerg Arndt, Mar 07 2013 */
-
vector(50, n, n--; sum(k=0, n/2, (-1)^(n-k)*k!*binomial(n, k)*binomial(n-k, k))) \\ Altug Alkan, Oct 22 2015
-
a(n) = polhermite(n, -1/2); \\ Michel Marcus, Oct 12 2016
-
from sympy import hermite
def a(n): return hermite(n, -1/2) # Indranil Ghosh, May 26 2017
A122021
a(n) = a(n-2) - (n-1)*a(n-3), with a(0) = 0, a(1) = 1, a(2) = 2.
Original entry on oeis.org
0, 1, 2, 1, -1, -7, -6, -1, 43, 47, 52, -383, -465, -1007, 4514, 5503, 19619, -66721, -73932, -419863, 1193767, 1058777, 10010890, -25204097, -14340981, -265465457, 615761444, 107400049, 7783328783, -17133920383, 4668727362
Offset: 0
-
a:= function(n)
if n<3 then return n;
else return a(n-2) - (n-1)*a(n-3);
fi;
end;
List([0..30], n-> a(n) ); # G. C. Greubel, Oct 06 2019
-
I:=[0,1,2]; [n le 3 select I[n] else Self(n-2) - (n-2)*Self(n-3): n in [1..30]]; // G. C. Greubel, Oct 06 2019
-
a:= proc(n) option remember;
if n < 3 then n
else a(n-2)-(n-1)*a(n-3)
fi;
end proc;
seq(a(n), n = 0..30); # G. C. Greubel, Oct 06 2019
-
a[0]=0; a[1]=1; a[2]=2; a[n_]:= a[n]= a[n-2] - (n-1)*a[n-3]; Table[a[n], {n, 0, 30}]
RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[n]==a[n-2]-(n-1)a[n-3]},a,{n,30}] (* Harvey P. Dale, Apr 29 2022 *)
-
my(m=30, v=concat([0,1,2], vector(m-3))); for(n=4, m, v[n] = v[n-2] - (n-2)*v[n-3]); v \\ G. C. Greubel, Oct 06 2019
-
def a(n):
if (n<3): return n
else: return a(n-2) - (n-1)* a(n-3)
[a(n) for n in (0..30)] # G. C. Greubel, Oct 06 2019
A122022
a(n) = a(n-1) - (n-1)*a(n-4), with a(0) = 0, a(1) = 1, a(2) = 2, a(3) = 1.
Original entry on oeis.org
0, 1, 2, 1, 1, -3, -13, -19, -26, -2, 115, 305, 591, 615, -880, -5150, -14015, -23855, -8895, 83805, 350090, 827190, 1013985, -829725, -8881795, -28734355, -54083980, -32511130, 207297335, 1011859275, 2580294695, 3555628595, -2870588790, -35250085590
Offset: 0
-
a:= function(n)
if n<3 then return n;
elif n=3 then return 1;
else return a(n-1) - (n-1)*a(n-4);
fi;
end;
List([1..30], n-> a(n) ); # G. C. Greubel, Oct 06 2019
-
I:=[0,1,2,1]; [n le 4 select I[n] else Self(n-1) - (n-2)*Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 06 2019
-
a:= proc(n) option remember;
if n<3 then n
elif n=3 then 1
else a(n-1) - (n-1)*a(n-4)
fi;
end: seq(a(n), n=0..30); # G. C. Greubel, Oct 06 2019
-
a[0]=0; a[1]=1; a[2]=2; a[3]=1; a[n_]:= a[n]= a[n-1] - (n-1)*a[n-4]; Table[a[n], {n, 0, 30}]
RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[3]==1,a[n]==a[n-1]- (n-1) a[n-4]},a,{n,0,30}] (* Harvey P. Dale, Nov 28 2014 *)
-
my(m=30, v=concat([0,1,2,1], vector(m-4))); for(n=5, m, v[n] = v[n-1] - (n-2)*v[n-4]); v \\ G. C. Greubel, Oct 06 2019
-
@CachedFunction
def a(n):
if (n<3): return n
elif (n==3): return 1
else: return a(n-1) - (n-1)*a(n-4)
[a(n) for n in (0..30)] # G. C. Greubel, Oct 06 2019
A369738
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(1 - (1+x)^k).
Original entry on oeis.org
1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 2, -1, 0, 1, -4, 3, 4, 1, 0, 1, -5, 4, 21, -20, -1, 0, 1, -6, 5, 56, -63, 8, 1, 0, 1, -7, 6, 115, -104, -423, 184, -1, 0, 1, -8, 7, 204, -95, -2464, 1899, -464, 1, 0, 1, -9, 8, 329, 36, -8245, 1696, 15201, -1648, -1, 0
Offset: 0
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, 1, 2, 3, 4, 5, 6, ...
0, -1, 4, 21, 56, 115, 204, ...
0, 1, -20, -63, -104, -95, 36, ...
0, -1, 8, -423, -2464, -8245, -21096, ...
0, 1, 184, 1899, 1696, -21275, -124344, ...
-
a000587(n) = sum(k=0, n, (-1)^k*stirling(n, k, 2));
T(n, k) = sum(j=0, n, k^j*stirling(n, j, 1)*a000587(j));
A144141
a(n) = Hermite(n,2).
Original entry on oeis.org
1, 4, 14, 40, 76, -16, -824, -3104, -880, 46144, 200416, -121216, -4894016, -16666880, 60576896, 708980224, 1018614016, -18612911104, -109084520960, 233726715904, 5080118660096, 10971406004224, -169479359707136, -1160659303014400, 3153413334470656
Offset: 0
-
[(&+[(-1)^k*Factorial(n)*(4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jul 10 2018
-
lst={};Do[AppendTo[lst,HermiteH[n,2]],{n,0,7^2}];lst
HermiteH[Range[0,30],2] (* Harvey P. Dale, May 20 2012 *)
-
for(n=0, 50, print1(polhermite(n, 2), ", " )) \\ G. C. Greubel, Jul 10 2018
A122033
a(n) = 2*a(n-1) - 2*(n-2)*a(n-2), with a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 4, 4, -8, -40, -16, 368, 928, -3296, -21440, 16448, 461696, 561536, -9957632, -34515200, 209783296, 1455022592, -3803020288, -57076808704, 22755112960, 2214428956672, 3518653394944, -85968709390336, -326758168158208, 3301044295639040, 22286480662872064
Offset: 0
-
a:=[1,2];; for n in [3..35] do a[n]:=2*(a[n-1]-(n-3)*a[n-2]); od; a; # G. C. Greubel, Oct 04 2019
-
I:=[1,2]; [n le 2 select I[n] else 2*(Self(n-1)-(n-3)*Self(n-2)): n in [1..35]]; // G. C. Greubel, Oct 04 2019
-
a:= proc(n) option remember;
if n < 2 then n+1
else 2*(a(n-1) - (n-2)*a(n-2))
fi
end proc:
seq(a(n), n = 0..35); # G. C. Greubel, Oct 04 2019
-
a[n_]:= a[n]= If[n<2, n+1, a[n-1]-(n-2)*a[n-2]]; Table[a[n], {n,0,30}] (* modified by G. C. Greubel, Oct 04 2019 *)
nxt[{n_,a_,b_}]:={n+1,b,2b-2a(n-1)}; NestList[nxt,{1,1,2},30][[;;,2]] (* Harvey P. Dale, Jan 01 2024 *)
-
my(m=35, v=concat([1,2], vector(m-2))); for(n=3, m, v[n] = 2*(v[n-1] - (n-3)*v[n-2] ) ); v \\ G. C. Greubel, Oct 04 2019
-
def a(n):
if n<2: return n+1
else: return 2*(a(n-1) - (n-2)*a(n-2))
[a(n) for n in (0..35)] # G. C. Greubel, Oct 04 2019
A181089
Triangle T(n, k) = A060821(n,k) + A060821(n,n-k), read by rows.
Original entry on oeis.org
2, 2, 2, 2, 0, 2, 8, -12, -12, 8, 28, 0, -96, 0, 28, 32, 120, -160, -160, 120, 32, -56, 0, 240, 0, 240, 0, -56, 128, -1680, -1344, 3360, 3360, -1344, -1680, 128, 1936, 0, -17024, 0, 26880, 0, -17024, 0, 1936, 512, 30240, -9216, -80640, 48384, 48384, -80640, -9216, 30240, 512
Offset: 0
Triangle begins as:
2;
2, 2;
2, 0, 2;
8, -12, -12, 8;
28, 0, -96, 0, 28;
32, 120, -160, -160, 120, 32;
-56, 0, 240, 0, 240, 0, -56;
128, -1680, -1344, 3360, 3360, -1344, -1680, 128;
1936, 0, -17024, 0, 26880, 0, -17024, 0, 1936;
512, 30240, -9216, -80640, 48384, 48384, -80640, -9216, 30240, 512;
-
(* First program *)
p[x_, n_] = HermiteH[n, x] + ExpandAll[x^n*HermiteH[n, 1/x]];
Flatten[Table[CoefficientList[p[x, n], x], {n, 0, 15}]] (* edited by G. C. Greubel, Apr 04 2021 *)
(* Second program *)
A060821[n_, k_]:= If[EvenQ[n-k], (-1)^(Floor[(n-k)/2])*2^k*n!/(k!*(Floor[(n - k)/2]!)), 0];
T[n_, k_]:= A060821[n, k] +A060821[n, n-k];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 04 2021 *)
-
def A060821(n,k): return (-1)^((n-k)//2)*2^k*factorial(n)/(factorial(k)*factorial( (n-k)//2)) if (n-k)%2==0 else 0
def T(n,k): return A060821(n, k) + A060821(n, n-k)
flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 04 2021
A277378
Expansion of e.g.f. exp(2*x/(1-x))/sqrt(1-x^2).
Original entry on oeis.org
1, 2, 9, 50, 361, 3042, 29929, 331298, 4100625, 55777922, 828691369, 13316140818, 230256982201, 4257449540450, 83834039024649, 1750225301567618, 38614608429012001, 897325298084953602, 21904718673762721225, 560258287738117292018, 14981472258320814527241
Offset: 0
-
Table[Abs[HermiteH[n, I]]^2/2^n, {n, 0, 20}]
With[{nn=20},CoefficientList[Series[Exp[2x/(1-x)]/Sqrt[1-x^2],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 27 2023 *)
A025165
a(n) = H_n(1) / 2^floor(n/2) where H_n is the n-th Hermite polynomial.
Original entry on oeis.org
1, 2, 1, -2, -5, -2, 23, 58, -103, -670, 257, 7214, 4387, -77794, -134825, 819466, 2841841, -7427774, -55739071, 22221790, 1081264139, 1718092478, -20988454441, -79774943398, 402959508745
Offset: 0
-
[((&+[(-1)^k*Factorial(n)*(2)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]]))/2^(Floor(n/2)): n in [0..30]]; // G. C. Greubel, Jul 10 2018
-
A025165 := proc(n)
HermiteH(n,1)/2^(floor(n/2)) ;
simplify(%) ;
end proc: # R. J. Mathar, Feb 05 2013
-
Table[ HermiteH[ n, 1 ]/2^Floor[ n/2 ], {n, 0, 24} ]
-
for(n=0,30, print1(polhermite(n,1)/2^(floor(n/2)), ", ")) \\ G. C. Greubel, Jul 10 2018
Showing 1-10 of 13 results.
Comments