A122050 a(n) = (n-1)*a(n-1) - a(n-4) with a(0)=0, a(1)=1, a(2)=2, a(3)=1.
0, 1, 2, 1, 3, 11, 53, 317, 2216, 17717, 159400, 1593683, 17528297, 210321847, 2734024611, 38274750871, 574103734768, 9185449434441, 156149906360886, 2810660039745077, 53401966651421695, 1068030147578999459, 22428476949252627753, 493423682223518065489
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..449 [Offset adapted by _Georg Fischer_, Jun 06 2021]
Crossrefs
Cf. A122022.
Programs
-
GAP
a:=[0,1,2,1];; for n in [5..30] do a[n]:=(n-2)*a[n-1]-a[n-4]; od; a; # G. C. Greubel, Oct 04 2019
-
Magma
I:=[0,1,2,1]; [n le 4 select I[n] else (n-2)*Self(n-1) - Self(n-4): n in [1..30]]; // G. C. Greubel, Oct 04 2019
-
Maple
a := proc (n) option remember; if n < 3 then n elif n = 3 then 1 else (n-1)*a(n-1)-a(n-4) end if end proc: seq(a(n), n = 0..30); # G. C. Greubel, Oct 04 2019
-
Mathematica
a[0]=0; a[1]=1; a[2]=2; a[3]=1; a[n_]:= a[n]= (n-1)*a[n-1] - a[n-4]; Table[a[n], {n, 0, 30}] RecurrenceTable[{a[0]==0,a[1]==1,a[2]==2,a[3]==1,a[n]==(n-1)a[n-1]- a[n-4]}, a,{n,0,30}] (* Harvey P. Dale, Jul 16 2016 *) CoefficientList[AsymptoticDSolveValue[{(x^4 + 1)*f[x] - x^2*f'[x] + 3*x^3 - x^2 - x == 0, f[1] == 1}, f[x], {x, 0, 20}], x] (* version >=12, Vaclav Kotesovec, Jun 06 2021 *)
-
PARI
my(m=30, v=concat([0,1,2,1], vector(m-4))); for(n=5, m, v[n] = (n-2)*v[n-1] - v[n-4] ); v \\ G. C. Greubel, Oct 04 2019
-
Sage
def a(n): if n<4: return n-1 elif n==4: return 1 else: return (n-2)*a(n-1) - a(n-4) [a(n) for n in (1..30)] # G. C. Greubel, Oct 04 2019
Formula
a(n) ~ c * (n-1)!, where c = 0.438972920465828798175530475000702431170711231072281289641... - Vaclav Kotesovec, Jun 06 2021
Extensions
Offset changed to 0 by Georg Fischer, Jun 06 2021
Comments