cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A369751 Expansion of e.g.f. exp(1 - (1+x)^3).

Original entry on oeis.org

1, -3, 3, 21, -63, -423, 1899, 15201, -72063, -832491, 3105459, 60090093, -110508543, -5224722831, -3828328677, 510699368313, 2104026859521, -52582823289171, -473592954347037, 5168227121231301, 92434892126557761, -357595962971807223, -17085974691782295477
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2024

Keywords

Crossrefs

Column k=3 of A369738.

Programs

  • Maple
    A369751 := proc(n)
        option remember ;
        if n =0 then
            1;
        else
            add( binomial(2,k-1) * procname(n-k)/(n-k)!,k=1..min(3,n)) ;
            -3*(n-1)!*% ;
        end if;
    end proc:
    seq(A369751(n),n=0..20) ; # R. J. Mathar, Feb 02 2024
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)^3)))

Formula

a(0) = 1; a(n) = -3 * (n-1)! * Sum_{k=1..min(3,n)} binomial(2,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 3^k * Stirling1(n,k) * A000587(k).
D-finite with recurrence a(n) +3*a(n-1) +6*(n-1)*a(n-2) +3*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Feb 02 2024

A369753 Expansion of e.g.f. exp(1 - (1+x)^5).

Original entry on oeis.org

1, -5, 5, 115, -95, -8245, -21275, 896275, 8801825, -95466725, -2703832475, -3522650125, 717727962625, 9961465952875, -118944021914875, -5634631318806125, -37511809003469375, 2020875725751906875, 55489065505990733125, -65182838564153418125
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2024

Keywords

Crossrefs

Column k=5 of A369738.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)^5)))

Formula

a(0) = 1; a(n) = -5 * (n-1)! * Sum_{k=1..min(5,n)} binomial(4,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 5^k * Stirling1(n,k) * A000587(k).

A369752 Expansion of e.g.f. exp(1 - (1+x)^4).

Original entry on oeis.org

1, -4, 4, 56, -104, -2464, 1696, 181184, 462016, -17069824, -141580544, 1593913856, 33015560704, -47193585664, -6973651011584, -50207289585664, 1214484253413376, 25500259291480064, -72069247145590784, -8696105637665603584, -81680899029758541824
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2024

Keywords

Crossrefs

Column k=4 of A369738.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[1-(1+x)^4],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 29 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)^4)))

Formula

a(0) = 1; a(n) = -4 * (n-1)! * Sum_{k=1..min(4,n)} binomial(3,k-1) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} 4^k * Stirling1(n,k) * A000587(k).
D-finite with recurrence a(n) +4*a(n-1) +12*(n-1)*a(n-2) +12*(n-1)*(n-2)*a(n-3) +4*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Feb 02 2024

A369754 a(n) = n! * [x^n] exp(1 - (1+x)^n).

Original entry on oeis.org

1, -1, 2, 21, -104, -8245, -124344, 7728581, 757142912, 21142327671, -3194024271200, -589138966169611, -38768504982354432, 4948651031184677219, 2022468386748039472256, 303711906641250589741125, -7986432746850744238505984, -19535207301291993249120303121
Offset: 0

Views

Author

Seiichi Manyama, Jan 31 2024

Keywords

Crossrefs

Main diagonal of A369738.

Formula

a(n) = Sum_{k=0..n} n^k * Stirling1(n,k) * A000587(k).
Showing 1-4 of 4 results.