John Riordan has authored 3 sequences.
Original entry on oeis.org
0, 1, 3, 10, 38, 177, 999, 6676, 51564, 451585, 4418555, 47746686, 564528978, 7247396065, 100378220943, 1491699317032, 23673159231704, 399553959924801, 7146023007880179, 134997604341408370, 2686037319660797310, 56143557248353416721, 1229914413684635491703
Offset: 0
-
b:= proc(n) b(n):= `if`(n<2, 1, n*b(n-1)-b(n-2)+1+(-1)^n) end:
a:= n-> `if`(n=0, 0, b(n-1)+b(n)-1):
seq(a(n), n=0..22); # Alois P. Heinz, Jun 17 2021
-
b[n_] := b[n] = If[n<2, 1, n*b[n-1] - b[n-2] + 1 + (-1)^n];
a[n_] := If[n == 0, 0, b[n-1] + b[n] - 1];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 26 2022, after Alois P. Heinz *)
A003470
a(n) = n*a(n-1) - a(n-2) + 1 + (-1)^n.
Original entry on oeis.org
1, 1, 3, 8, 31, 147, 853, 5824, 45741, 405845, 4012711, 43733976, 520795003, 6726601063, 93651619881, 1398047697152, 22275111534553, 377278848390249, 6768744159489931, 128228860181918440, 2557808459478878871, 53585748788874537851, 1176328664895760953853
Offset: 0
G.f. = 1 + x + 3*x^2 + 8*x^3 + 31*x^4 + 147*x^5 + 853*x^6 + 5824*x^7 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
f:= gfun:-rectoproc({a(n) -(n-1)*a(n-1)-(n-2)*a(n-2)+a(n-3)-2=0,a(0)=1,a(1)=1,a(2)=3},a(n),remember):
map(f, [$0..30]); # Robert Israel, Dec 06 2016
-
t = {1, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]] + 1 + (-1)^n], {n, 2, 20}] (* T. D. Noe, Oct 07 2013 *)
T[n_, k_] := HypergeometricPFQ[{k+1, k-n},{},-1];
Table[Sum[(-1)^k T[n,k], {k,0,n}], {n,0,22}] (* Peter Luschny, Oct 05 2017 *)
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Oct 25 2004
A000669
Number of series-reduced planted trees with n leaves. Also the number of essentially series series-parallel networks with n edges; also the number of essentially parallel series-parallel networks with n edges.
Original entry on oeis.org
1, 1, 2, 5, 12, 33, 90, 261, 766, 2312, 7068, 21965, 68954, 218751, 699534, 2253676, 7305788, 23816743, 78023602, 256738751, 848152864, 2811996972, 9353366564, 31204088381, 104384620070, 350064856815, 1176693361956, 3963752002320
Offset: 1
G.f. = x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 33*x^6 + 90*x^7 + 261*x^8 + ...
a(4)=5 with the following series-reduced planted trees: (oooo), (oo(oo)), (o(ooo)), (o(o(oo))), ((oo)(oo)). - _Michael Somos_, Jul 25 2003
- N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 43.
- A. Brandstaedt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey, SIAM Publications, 1999. (For definition of cograph)
- A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 3, p. 246.
- D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, p. 589, Answers to Exercises Section 2.3.4.4 5.
- L. F. Meyers, Corrections and additions to Tree Representations in Linguistics. Report 3, 1966, p. 138. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
- L. F. Meyers and W. S.-Y. Wang, Tree Representations in Linguistics. Report 3, 1963, pp. 107-108. Project on Linguistic Analysis, Ohio State University Research Foundation, Columbus, Ohio.
- J. Riordan and C. E. Shannon, The number of two-terminal series-parallel networks, J. Math. Phys., 21 (1942), 83-93 (the numbers called a_n in this paper). Reprinted in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 560-570.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, First 1001 terms of A000669
- Mohamed Barakat, Reimer Behrends, Christopher Jefferson, Lukas Kühne, and Martin Leuner, On the generation of rank 3 simple matroids with an application to Terao's freeness conjecture, arXiv:1907.01073 [math.CO], 2019.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Peter J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183. MR0891613 (89a:05009). See pp. 155, 162, 165, 172. - _N. J. A. Sloane_, Apr 18 2014
- Peter J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
- Maria Chudnovsky, Jan Goedgebeur, Oliver Schaudt, and Mingxian Zhong, Obstructions for three-coloring graphs without induced paths on six vertices, arXiv preprint arXiv:1504.06979 [math.CO], 2015-2018.
- Steven R. Finch, Series-parallel networks
- Steven R. Finch, Series-parallel networks, July 7, 2003. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018.
- Philippe Flajolet, A Problem in Statistical Classification Theory
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 72
- Daniel L. Geisler, Combinatorics of Iterated Functions
- A. Genitrini, Full asymptotic expansion for Polya structures, arXiv:1605.00837 [math.CO], May 03 2016, p. 9.
- O. Golinelli, Asymptotic behavior of two-terminal series-parallel networks, arXiv:cond-mat/9707023 [cond-mat.stat-mech], 1997.
- JiSun Huh and Seonjeong Park, Toric varieties of Schröder type, arXiv:2204.00214 [math.AG], 2022. (Table 1)
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 44 [broken link].
- V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012. - From _N. J. A. Sloane_, Dec 22 2012
- P. A. MacMahon, Yoke-trains and multipartite compositions in connexion with the analytical forms called "trees", Proc. London Math. Soc. 22 (1891), 330-346; reprinted in Coll. Papers I, pp. 600-616. Page 333 gives A000084 = 2*A000669.
- Arnau Mir, Francesc Rossello, and Lucia Rotger, Sound Colless-like balance indices for multifurcating trees, arXiv:1805.01329 [q-bio.PE], 2018.
- V. Modrak and D. Marton, Development of Metrics and a Complexity Scale for the Topology of Assembly Supply Chains, Entropy 2013, 15, 4285-4299.
- J. W. Moon, Some enumerative results on series-parallel networks, Annals Discrete Math., 33 (1987), 199-226.
- Vlady Ravelomanana and Loys Thimonier, Asymptotic enumeration of cographs, Electronic Notes in Discrete Mathematics, Volume 7, April 2001, pp. 58-61, Theorem 4.
- J. Riordan, The blossoming of Schröder's fourth problem, Acta Math., 137 (1976), 1-16. (page 6)
- J. Riordan, Letter to N. J. A. Sloane, Sep. 1970
- J. Riordan, Letter to N. J. A. Sloane, Nov 10 1970
- Audace Amen Vioutou Dossou-Olory, and Stephan Wagner, Inducibility of Topological Trees, arXiv:1802.06696 [math.CO], 2018.
- Audace Amen Vioutou Dossou-Olory, The topological trees with extremal Matula numbers, arXiv:1806.03995 [math.CO], 2018.
- Wei Wang and Ximei Huang, Almost all cographs have a cospectral mate, arXiv:2507.16730 [math.CO], 2025. See pp. 6, 8.
- Eric Weisstein's World of Mathematics, Series-Parallel Network
- Index entries for sequences related to rooted trees
- Index entries for sequences mentioned in Moon (1987)
- Index entries for sequences related to trees
Cf.
A000311, labeled hierarchies on n points.
-
Method 1: a := [1,1]; for n from 3 to 30 do L := series( mul( (1-x^k)^(-a[k]),k=1..n-1)/(1-x^n)^b, x,n+1); t1 := coeff(L,x,n); R := series( 1+2*add(a[k]*x^k,k=1..n-1)+2*b*x^n, x, n+1); t2 := coeff(R,x,n); t3 := solve(t1-t2,b); a := [op(a),t3]; od: A000669 := n-> a[n];
Method 2, more efficient: with(numtheory): M := 1001; a := array(0..M); p := array(0..M); a[1] := 1; a[2] := 1; a[3] := 2; p[1] := 1; p[2] := 3; p[3] := 7;
Method 2, cont.: for m from 4 to M do t1 := divisors(m); t3 := 0; for d in t1 minus {m} do t3 := t3+d*a[d]; od: t4 := p[m-1]+2*add(p[k]*a[m-k],k=1..m-2)+t3; a[m] := t4/m; p[m] := t3+t4; od: # A000669 := n-> a[n]; A058757 := n->p[n];
# Method 3:
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(a(i)+j-1, j)*
b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<2, n, b(n, n-1)):
seq(a(n), n=1..40); # Alois P. Heinz, Jan 28 2016
-
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]+j-1, j]* b[n-i*j, i-1], {j, 0, n/i}]]];
a[n_] := If[n<2, n, b[n, n-1]];
Array[a, 40] (* Jean-François Alcover, Jan 08 2021, after Alois P. Heinz *)
-
{a(n) = my(A, X); if( n<2, n>0, X = x + x * O(x^n); A = 1 / (1 - X); for(k=2, n, A /= (1 - X^k)^polcoeff(A, k)); polcoeff(A, n)/2)}; /* Michael Somos, Jul 25 2003 */
-
from collections import Counter
def A000669_list(n):
list = [1] + [0] * (n - 1)
for i in range(1, n):
for p in Partitions(i + 1, min_length=2):
m = Counter(p)
list[i] += prod(binomial(list[s - 1] + m[s] - 1, m[s]) for s in m)
return list
print(A000669_list(20)) # M. Eren Kesim, Jun 21 2021
Comments