1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 5, 4, 3, 1, 6, 2, 5, 4, 5, 1, 9, 1, 6, 4, 4, 4, 8, 1, 6, 6, 7, 1, 11, 1, 8, 8, 4, 1, 10, 3, 10, 5, 8, 1, 11, 4, 10, 7, 6, 1, 13, 1, 10, 11, 7, 6, 15, 1, 9, 5, 11, 1, 14, 1, 9, 12, 8, 5, 15, 1, 16, 9, 8, 1, 18, 5, 12, 7, 10, 1, 21, 7, 13, 11, 5
Offset: 0
a(12) = 4: [12], [10,2], [9,3], [8,4].
a(14) = 3: [14], [12,2], [8,4,2].
a(18) = 5: [18], [16,2], [15,3], [12,6], [12,4,2].
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(36) = 8 lone-child-avoiding achiral rooted trees with 37 vertices:
(oooooooooooooooooooooooooooooooooooo)
((oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo))
((ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo))
((ooooo)(ooooo)(ooooo)(ooooo)(ooooo)(ooooo))
((oooooooo)(oooooooo)(oooooooo)(oooooooo))
(((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))((ooo)(ooo)))
((ooooooooooo)(ooooooooooo)(ooooooooooo))
((ooooooooooooooooo)(ooooooooooooooooo))
(End)
Comments