cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A259859 a(0)=0; thereafter A003470(n-1) + A003470(n) - 1.

Original entry on oeis.org

0, 1, 3, 10, 38, 177, 999, 6676, 51564, 451585, 4418555, 47746686, 564528978, 7247396065, 100378220943, 1491699317032, 23673159231704, 399553959924801, 7146023007880179, 134997604341408370, 2686037319660797310, 56143557248353416721, 1229914413684635491703
Offset: 0

Views

Author

N. J. A. Sloane, Jul 07 2015, based on a suggestion from John Riordan, Nov 14 1974

Keywords

Crossrefs

Cf. A003470.

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<2, 1, n*b(n-1)-b(n-2)+1+(-1)^n) end:
    a:= n-> `if`(n=0, 0, b(n-1)+b(n)-1):
    seq(a(n), n=0..22);  # Alois P. Heinz, Jun 17 2021
  • Mathematica
    b[n_] := b[n] = If[n<2, 1, n*b[n-1] - b[n-2] + 1 + (-1)^n];
    a[n_] := If[n == 0, 0, b[n-1] + b[n] - 1];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 26 2022, after Alois P. Heinz *)

Formula

D-finite with recurrence: (-n+2)*a(n) +(n-1)^2*a(n-1) +2*(-n+2)*a(n-2) +(-n^2+4*n-2)*a(n-3) +(n-1)*a(n-4)=0. - R. J. Mathar, Jul 15 2015

Extensions

Offset corrected by N. J. A. Sloane, Jun 16 2021

A094587 Triangle of permutation coefficients arranged with 1's on the diagonal. Also, triangle of permutations on n letters with exactly k+1 cycles and with the first k+1 letters in separate cycles.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, 120, 120, 60, 20, 5, 1, 720, 720, 360, 120, 30, 6, 1, 5040, 5040, 2520, 840, 210, 42, 7, 1, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1, 3628800, 3628800
Offset: 0

Views

Author

Paul Barry, May 13 2004

Keywords

Comments

Also, table of Pochhammer sequences read by antidiagonals (see Rudolph-Lilith, 2015). - N. J. A. Sloane, Mar 31 2016
Reverse of A008279. Row sums are A000522. Diagonal sums are A003470. Rows of inverse matrix begin {1}, {-1,1}, {0,-2,1}, {0,0,-3,1}, {0,0,0,-4,1} ... The signed lower triangular matrix (-1)^(n+k)n!/k! has as row sums the signed rencontres numbers Sum_{k=0..n} (-1)^(n+k)n!/k!. (See A000166). It has matrix inverse 1 1,1 0,2,1 0,0,3,1 0,0,0,4,1,...
Exponential Riordan array [1/(1-x),x]; column k has e.g.f. x^k/(1-x). - Paul Barry, Mar 27 2007
From Tom Copeland, Nov 01 2007: (Start)
T is the umbral extension of n!*Lag[n,(.)!*Lag[.,x,-1],0] = (1-D)^(-1) x^n = (-1)^n * n! * Lag(n,x,-1-n) = Sum_{j=0..n} binomial(n,j) * j! * x^(n-j) = Sum_{j=0..n} (n!/j!) x^j. The inverse operator is A132013 with generalizations discussed in A132014.
b = T*a can be characterized several ways in terms of a(n) and b(n) or their o.g.f.'s A(x) and B(x).
1) b(n) = n! Lag[n,(.)!*Lag[.,a(.),-1],0], umbrally,
2) b(n) = (-1)^n n! Lag(n,a(.),-1-n)
3) b(n) = Sum_{j=0..n} (n!/j!) a(j)
4) B(x) = (1-xDx)^(-1) A(x), formally
5) B(x) = Sum_{j=0,1,...} (xDx)^j A(x)
6) B(x) = Sum_{j=0,1,...} x^j * D^j * x^j A(x)
7) B(x) = Sum_{j=0,1,...} j! * x^j * L(j,-:xD:,0) A(x) where Lag(n,x,m) are the Laguerre polynomials of order m, D the derivative w.r.t. x and (:xD:)^j = x^j * D^j. Truncating the operator series at the j = n term gives an o.g.f. for b(0) through b(n).
c = (0!,1!,2!,3!,4!,...) is the sequence associated to T under the list partition transform and the associated operations described in A133314 so T(n,k) = binomial(n,k)*c(n-k). The reciprocal sequence is d = (1,-1,0,0,0,...). (End)
From Peter Bala, Jul 10 2008: (Start)
This array is the particular case P(1,1) of the generalized Pascal triangle P(a,b), a lower unit triangular matrix, shown below:
n\k|0.....................1...............2.......3......4
----------------------------------------------------------
0..|1.....................................................
1..|a....................1................................
2..|a(a+b)...............2a..............1................
3..|a(a+b)(a+2b).........3a(a+b).........3a........1......
4..|a(a+b)(a+2b)(a+3b)...4a(a+b)(a+2b)...6a(a+b)...4a....1
...
The entries A(n,k) of this array satisfy the recursion A(n,k) = (a+b*(n-k-1))*A(n-1,k) + A(n-1,k-1), which reduces to the Pascal formula when a = 1, b = 0.
Various cases are recorded in the database, including: P(1,0) = Pascal's triangle A007318, P(2,0) = A038207, P(3,0) = A027465, P(2,1) = A132159, P(1,3) = A136215 and P(2,3) = A136216.
When b <> 0 the array P(a,b) has e.g.f. exp(x*y)/(1-b*y)^(a/b) = 1 + (a+x)*y + (a*(a+b)+2a*x+x^2)*y^2/2! + (a*(a+b)*(a+2b) + 3a*(a+b)*x + 3a*x^2+x^3)*y^3/3! + ...; the array P(a,0) has e.g.f. exp((x+a)*y).
We have the matrix identities P(a,b)*P(a',b) = P(a+a',b); P(a,b)^-1 = P(-a,b).
An analog of the binomial expansion for the row entries of P(a,b) has been proved by [Echi]. Introduce a (generally noncommutative and nonassociative) product ** on the ring of polynomials in two variables by defining F(x,y)**G(x,y) = F(x,y)G(x,y) + by^2*d/dy(G(x,y)).
Define the iterated product F^(n)(x,y) of a polynomial F(x,y) by setting F^(1) = F(x,y) and F^(n)(x,y) = F(x,y)**F^(n-1)(x,y) for n >= 2. Then (x+a*y)^(n) = x^n + C(n,1)*a*x^(n-1)*y + C(n,2)*a*(a+b)*x^(n-2)*y^2 + ... + C(n,n)*a*(a+b)*(a+2b)*...*(a+(n-1)b)*y^n. (End)
(n+1) * n-th row = reversal of triangle A068424: (1; 2,2; 6,6,3; ...) - Gary W. Adamson, May 03 2009
Let G(m, k, p) = (-p)^k*Product_{j=0..k-1}(j - m - 1/p) and T(n,k,p) = G(n-1,n-k,p) then T(n, k, 1) is this sequence, T(n, k, 2) = A112292(n, k) and T(n, k, 3) = A136214. - Peter Luschny, Jun 01 2009, revised Jun 18 2019
The higher order exponential integrals E(x,m,n) are defined in A163931. For a discussion of the asymptotic expansions of the E(x,m=1,n) ~ (exp(-x)/x)*(1 - n/x + (n^2+n)/x^2 - (2*n+3*n^2+n^3)/x^3 + (6*n+11*n^2+6*n^3+n^4)/x^3 - ...) see A130534. The asymptotic expansion of E(x,m=1,n) leads for n >= 1 to the left hand columns of the triangle given above. Triangle A165674 is generated by the asymptotic expansions of E(x,m=2,n). - Johannes W. Meijer, Oct 07 2009
T(n,k) = n!/k! = number of permutations of [n+1] with exactly k+1 cycles and with elements 1,2,...,k+1 in separate cycles. See link and example below. - Dennis P. Walsh, Jan 24 2011
T(n,k) is the number of n permutations that leave some size k subset of {1,2,...,n} fixed. Sum_{k=0..n}(-1)^k*T(n,k) = A000166(n) (the derangements). - Geoffrey Critzer, Dec 11 2011
T(n,k) = A162995(n-1,k-1), 2 <= k <= n; T(n,k) = A173333(n,k), 1 <= k <= n. - Reinhard Zumkeller, Jul 05 2012
The row polynomials form an Appell sequence. The matrix is a special case of a group of general matrices sketched in A132382. - Tom Copeland, Dec 03 2013
For interpretations in terms of colored necklaces, see A213936 and A173333. - Tom Copeland, Aug 18 2016
See A008279 for a relation of this entry to the e.g.f.s enumerating the faces of permutahedra and stellahedra. - Tom Copeland, Nov 14 2016
Also, T(n,k) is the number of ways to arrange n-k nonattacking rooks on the n X (n-k) chessboard. - Andrey Zabolotskiy, Dec 16 2016
The infinitesimal generator of this triangle is the generalized exponential Riordan array [-log(1-x), x] and equals the unsigned version of A238363. - Peter Bala, Feb 13 2017
Formulas for exponential and power series infinitesimal generators for this triangle T are given in Copeland's 2012 and 2014 formulas as T = unsigned exp[(I-A238385)] = 1/(I - A132440), where I is the identity matrix. - Tom Copeland, Jul 03 2017
If A(0) = 1/(1-x), and A(n) = d/dx(A(n-1)), then A(n) = n!/(1-x)^(n+1) = Sum_{k>=0} (n+k)!/k!*x^k = Sum_{k>=0} T(n+k, k)*x^k. - Michael Somos, Sep 19 2021

Examples

			Rows begin {1}, {1,1}, {2,2,1}, {6,6,3,1}, ...
For n=3 and k=1, T(3,1)=6 since there are exactly 6 permutations of {1,2,3,4} with exactly 2 cycles and with 1 and 2 in separate cycles. The permutations are (1)(2 3 4), (1)(2 4 3), (1 3)(2 4), (1 4)(2 3), (1 3 4)(2), and (1 4 3)(2). - _Dennis P. Walsh_, Jan 24 2011
Triangle begins:
     1,
     1,    1,
     2,    2,    1,
     6,    6,    3,    1,
    24,   24,   12,    4,    1,
   120,  120,   60,   20,    5,    1,
   720,  720,  360,  120,   30,    6,    1,
  5040, 5040, 2520,  840,  210,   42,    7,    1
The production matrix is:
      1,     1,
      1,     1,     1,
      2,     2,     1,    1,
      6,     6,     3,    1,    1,
     24,    24,    12,    4,    1,   1,
    120,   120,    60,   20,    5,   1,   1,
    720,   720,   360,  120,   30,   6,   1,   1,
   5040,  5040,  2520,  840,  210,  42,   7,   1,   1,
  40320, 40320, 20160, 6720, 1680, 336,  56,   8,   1,   1
which is the exponential Riordan array A094587, or [1/(1-x),x], with an extra superdiagonal of 1's.
Inverse begins:
   1,
  -1,  1,
   0, -2,  1,
   0,  0, -3,  1,
   0,  0,  0, -4,  1,
   0,  0,  0,  0, -5,  1,
   0,  0,  0,  0,  0, -6,  1,
   0,  0,  0,  0,  0,  0, -7,  1
		

Crossrefs

Programs

  • Haskell
    a094587 n k = a094587_tabl !! n !! k
    a094587_row n = a094587_tabl !! n
    a094587_tabl = map fst $ iterate f ([1], 1)
       where f (row, i) = (map (* i) row ++ [1], i + 1)
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    T := proc(n, m): n!/m! end: seq(seq(T(n, m), m=0..n), n=0..9);  # Johannes W. Meijer, Oct 07 2009, revised Nov 25 2012
    # Alternative: Note that if you leave out 'abs' you get A021009.
    T := proc(n, k) option remember; if n = 0 and k = 0 then 1 elif k < 0 or k > n then 0 else abs((n + k)*T(n-1, k) - T(n-1, k-1)) fi end: #  Peter Luschny, Dec 30 2021
  • Mathematica
    Flatten[Table[Table[n!/k!, {k,0,n}], {n,0,10}]] (* Geoffrey Critzer, Dec 11 2011 *)
  • Sage
    def A094587_row(n): return (factorial(n)*exp(x).taylor(x,0,n)).list()
    for n in (0..7): print(A094587_row(n)) # Peter Luschny, Sep 28 2017

Formula

T(n, k) = n!/k! if n >= k >= 0, otherwise 0.
T(n, k) = Sum_{i=k..n} |S1(n+1, i+1)*S2(i, k)| * (-1)^i, with S1, S2 the Stirling numbers.
T(n,k) = (n-k)*T(n-1,k) + T(n-1,k-1). E.g.f.: exp(x*y)/(1-y) = 1 + (1+x)*y + (2+2*x+x^2)*y^2/2! + (6+6*x+3*x^2+x^3)*y^3/3!+ ... . - Peter Bala, Jul 10 2008
A094587 = 1 / ((-1)*A129184 * A127648 + I), I = Identity matrix. - Gary W. Adamson, May 03 2009
From Johannes W. Meijer, Oct 07 2009: (Start)
The o.g.f. of right hand column k is Gf(z;k) = (k-1)!/(1-z)^k, k => 1.
The recurrence relations of the right hand columns lead to Pascal's triangle A007318. (End)
Let f(x) = (1/x)*exp(-x). The n-th row polynomial is R(n,x) = (-x)^n/f(x)*(d/dx)^n(f(x)), and satisfies the recurrence equation R(n+1,x) = (x+n+1)*R(n,x)-x*R'(n,x). Cf. A132159. - Peter Bala, Oct 28 2011
A padded shifted version of this lower triangular matrix with zeros in the first column and row except for a one in the diagonal position is given by integral(t=0 to t=infinity) exp[-t(I-P)] = 1/(I-P) = I + P^2 + P^3 + ... where P is the infinitesimal generator matrix A218234 and I the identity matrix. The non-padded version is given by P replaced by A132440. - Tom Copeland, Oct 25 2012
From Peter Bala, Aug 28 2013: (Start)
The row polynomials R(n,x) form a Sheffer sequence of polynomials with associated delta operator equal to d/dx. Thus d/dx(R(n,x)) = n*R(n-1,x). The Sheffer identity is R(n,x + y) = Sum_{k=0..n} binomial(n,k)*y^(n-k)*R(k,x).
Let P(n,x) = Product_{k=0..n-1} (x + k) denote the rising factorial polynomial sequence with the convention that P(0,x) = 1. Then this is triangle of connection constants when expressing the basis polynomials P(n,x + 1) in terms of the basis P(n,x). For example, row 3 is (6, 6, 3, 1) so P(3,x + 1) = (x + 1)*(x + 2)*(x + 3) = 6 + 6*x + 3*x*(x + 1) + x*(x + 1)*(x + 2). (End)
From Tom Copeland, Apr 21 & 26, and Aug 13 2014: (Start)
T-I = M = -A021009*A132440*A021009 with e.g.f. y*exp(x*y)/(1-y). Cf. A132440. Dividing the n-th row of M by n generates the (n-1)th row of T.
T = 1/(I - A132440) = {2*I - exp[(A238385-I)]}^(-1) = unsigned exp[(I-A238385)] = exp[A000670(.)*(A238385-I)] = , umbrally, where I = identity matrix.
The e.g.f. is exp(x*y)/(1-y), so the row polynomials form an Appell sequence with lowering operator d/dx and raising operator x + 1/(1-D).
With L(n,m,x)= Laguerre polynomials of order m, the row polynomials are (-1)^n*n!*L(n,-1-n,x) = (-1)^n*(-1!/(-1-n)!)*K(-n,-1-n+1,x) = n!* K(-n,-n,x) where K is Kummer's confluent hypergeometric function (as a limit of n+s as s tends to zero).
Operationally, (-1)^n*n!*L(n,-1-n,-:xD:) = (-1)^n*x^(n+1)*:Dx:^n*x^(-1-n) = (-1)^n*x*:xD:^n*x^(-1) = (-1)^n*n!*binomial(xD-1,n) = n!*K(-n,-n,-:xD:) where :AB:^n = A^n*B^n for any two operators. Cf. A235706 and A132159.
The n-th row of signed M has the coefficients of d[(-:xD:)^n]/d(:Dx:)= f[d/d(-:xD:)](-:xD:)^n with f(y)=y/(y-1), :Dx:^n= n!L(n,0,-:xD:), and (-:xD:)^n = n!L(n,0,:Dx:). M has the coefficients of [D/(1-D)]x^n. (End)
From Tom Copeland, Nov 18 2015: (Start)
Coefficients of the row polynomials of the e.g.f. Sum_{n>=0} P_n(b1,b2,..,bn;t) x^n/n! = e^(P.(..;t) x) = e^(xt) / (1-b.x) = (1 + b1 x + b2 x^2 + b3 x^3 + ...) e^(xt) = 1 + (b1 + t) x + (2 b2 + 2 b1 t + t^2) x^2/2! + (6 b3 + 6 b2 t + 3 b1 t^2 + t^3) x^3/3! + ... , with lowering operator L = d/dt, i.e., L P_n(..;t) = n * P_(n-1)(..;t), and raising operator R = t + d[log(1 + b1 D + b2 D^2 + ...)]/dD = t - Sum_{n>=1} F(n,b1,..,bn) D^(n-1), i.e., R P_n(..,;t) = P_(n+1)(..;t), where D = d/dt and F(n,b1,..,bn) are the Faber polynomials of A263916.
Also P_n(b1,..,bn;t) = CIP_n(t-F(1,b1),-F(2,b1,b2),..,-F(n,b1,..,bn)), the cycle index polynomials A036039.
(End)
The raising operator R = x + 1/(1-D) = x + 1 + D + D^2 + ... in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonals come from D^m x^n = n! / (n-m)! x^(n-m). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T is a matrix representation of R P(n-1,x) = P(n,x). - Tom Copeland, Aug 17 2016
The row polynomials have e.g.f. e^(xt)/(1-t) = exp(t*q.(x)), umbrally. With p_n(x) the row polynomials of A132013, q_n(x) = v_n(p.(u.(x))), umbrally, where u_n(x) = (-1)^n v_n(-x) = (-1)^n Lah_n(x), the Lah polynomials with e.g.f. exp[x*t/(t-1)]. This has the matrix form [T] = [q] = [v]*[p]*[u]. Conversely, p_n(x) = u_n (q.(v.(x))). - Tom Copeland, Nov 10 2016
From the Appell sequence formalism, 1/(1-b.D) t^n = P_n(b1,b2,..,bn;t), the generalized row polynomials noted in the Nov 18 2015 formulas, consistent with the 2007 comments. - Tom Copeland, Nov 22 2016
From Peter Bala, Feb 18 2017: (Start)
G.f.: Sum_{n >= 1} (n*x)^(n-1)/(1 + (n - t)*x)^n = 1 + (1 + t)*x + (2 + 2*t + t^2)*x^2 + ....
n-th row polynomial R(n,t) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^k*(x + k - t)^(n-k) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x + k)^(n-k)*(x + k + t)^k, for arbitrary x. The particular case of the latter sum when x = 0 and t = 1 is identity 10.35 in Gould, Vol.4. (End)
Rodrigues-type formula for the row polynomials: R(n, x) = -exp(x)*Int(exp(-x)* x^n, x), for n >= 0. Recurrence: R(n, x) = x^n + n*R(n-1, x), for n >= 1, and R(0, x) = 1. d/dx(R(n, x)) = R(n, x) - x^n, for n >= 0 (compare with the formula from Peter Bala, Aug 28 2013). - Wolfdieter Lang, Dec 23 2019
T(n, k) = Sum_{i=0..n-k} A048994(n-k, i) * n^i for 0 <= k <= n. - Werner Schulte, Jul 26 2022

Extensions

Edited by Johannes W. Meijer, Oct 07 2009
New description from Dennis P. Walsh, Jan 24 2011

A086764 Triangle T(n, k), read by row, related to Euler's difference table A068106 (divide column k of A068106 by k!).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 9, 11, 7, 3, 1, 44, 53, 32, 13, 4, 1, 265, 309, 181, 71, 21, 5, 1, 1854, 2119, 1214, 465, 134, 31, 6, 1, 14833, 16687, 9403, 3539, 1001, 227, 43, 7, 1, 133496, 148329, 82508, 30637, 8544, 1909, 356, 57, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 02 2003

Keywords

Comments

The k-th column sequence, k >= 0, without leading zeros, enumerates the ways to distribute n beads, n >= 1, labeled differently from 1 to n, over a set of (unordered) necklaces, excluding necklaces with exactly one bead, and k+1 indistinguishable, ordered, fixed cords, each allowed to have any number of beads. Beadless necklaces as well as beadless cords each contribute a factor 1, hence for n=0 one has 1. See A000255 for the description of a fixed cord with beads. This comment derives from a family of recurrences found by Malin Sjodahl for a combinatorial problem for certain quark and gluon diagrams (Feb 27 2010). - Wolfdieter Lang, Jun 02 2010

Examples

			Formatted as a square array:
      1      3     7    13   21   31  43 57 ... A002061;
      2     11    32    71  134  227 356    ... A094792;
      9     53   181   465 1001 1909        ... A094793;
     44    309  1214  3539 8544             ... A094794;
    265   2119  9403 30637                  ... A023043;
   1854  16687 82508                        ... A023044;
  14833 148329                              ... A023045;
Formatted as a triangular array (mirror of A076731):
       1;
       0      1;
       1      1     1;
       2      3     2     1;
       9     11     7     3    1;
      44     53    32    13    4    1;
     265    309   181    71   21    5    1;
    1854   2119  1214   465  134   31    6   1;
   14833  16687  9403  3539 1001  227   43   7   1;
  133496 148329 82508 30637 8544 1909  356  57   8   1;
		

Crossrefs

Programs

  • Magma
    A086764:= func< n,k | (&+[(-1)^j*Binomial(n-k,j)*Factorial(n-j): j in [0..n]])/Factorial(k) >;
    [A086764(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Mathematica
    T[n_,k_]:=(1/k!)*Sum[(-1)^j*Binomial[n-k,j]*(n-j)!,{j,0,n}];Flatten[Table[T[n,k],{n,0,11},{k,0,n}]] (* Indranil Ghosh, Feb 20 2017 *)
    T[n_, k_] := (n!/k!) HypergeometricPFQ[{k-n},{-n},-1];
    Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)
  • SageMath
    def A086764(n,k): return sum((-1)^j*binomial(n-k,j)*factorial(n-j) for j in range(n+1))//factorial(k)
    flatten([[A086764(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n, n) = 1; T(n+1, n) = n.
T(n+2, n) = A002061(n+1) = n^2 + n + 1; T(n+3, n) = n^3 + 3*n^2 + 5*n + 2.
T(n, k) = (k + 1)*T(n, k + 1) - T(n-1, k); T(n, n) = 1; T(n, k) = 0, if k > n.
T(n, k) = (n-1)*T(n-1, k) + (n-k-1)*T(n-2, k).
k!*T(n, k) = A068106(n, k). [corrected by Georg Fischer, Aug 13 2022]
Sum_{k>=0} T(n, k) = A003470(n+1).
T(n, k) = (1/k!) * Sum_{j>=0} (-1)^j*binomial(n-k, j)*(n-j)!. - Philippe Deléham, Jun 13 2005
From Peter Bala, Aug 14 2008: (Start)
The following remarks all relate to the array read as a square array: e.g.f for column k: exp(-y)/(1-y)^(k+1); e.g.f. for array: exp(-y)/(1-x-y) = (1 + x + x^2 + x^3 + ...) + (x + 2*x^2 + 3*x^3 + 4*x^4 + ...)*y + (1 + 3*x + 7*x^2 + 13*x^3 + ...)*y^2/2! + ... .
This table is closely connected to the constant e. The row, column and diagonal entries of this table occur in series formulas for e.
Row n for n >= 2: e = n!*(1/T(n,0) + (-1)^n*[1/(1!*T(n,0)*T(n,1)) + 1/(2!*T(n,1)*T(n,2)) + 1/(3!*T(n,2)*T(n,3)) + ...]). For example, row 3 gives e = 6*(1/2 - 1/(1!*2*11) - 1/(2!*11*32) - 1/(3!*32*71) - ...). See A095000.
Column 0: e = 2 + Sum_{n>=2} (-1)^n*n!/(T(n,0)*T(n+1,0)) = 2 + 2!/(1*2) - 3 !/(2*9) + 4!/(9*44) - ... .
Column k, k >= 1: e = (1 + 1/1! + 1/2! + ... + 1/k!) + 1/k!*Sum_{n >= 0} (-1)^n*n!/(T(n,k)*T(n+1,k)). For example, column 3 gives e = 8/3 + 1/6*(1/(1*3) - 1/(3*13) + 2/(13*71) - 6/(71*465) + ...).
Main diagonal: e = 1 + 2*(1/(1*1) - 1/(1*7) + 1/(7*71) - 1/(71*1001) + ...).
First subdiagonal: e = 8/3 + 5/(3*32) - 7/(32*465) + 9/(465*8544) - ... .
Second subdiagonal: e = 2*(1 + 2^2/(1*11) - 3^2/(11*181) + 4^2/(181*3539) - ...). See A143413.
Third subdiagonal: e = 3 - (2*3*5)/(2*53) + (3*4*7)/(53*1214) - (4*5*9)/(1214*30637) + ... .
For the corresponding results for the constants 1/e, sqrt(e) and 1/sqrt(e) see A143409, A143410 and A143411 respectively. For other arrays similarly related to constants see A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)). (End)
G.f. for column k is hypergeom([1,k+1],[],x/(x+1))/(x+1). - Mark van Hoeij, Nov 07 2011
T(n, k) = (n!/k!)*hypergeom([k-n], [-n], -1). - Peter Luschny, Oct 05 2017

Extensions

More terms from David Wasserman, Mar 28 2005
Additional comments from Zerinvary Lajos, Mar 30 2006
Edited by N. J. A. Sloane, Sep 24 2011

A143409 Square array read by antidiagonals: form the Euler-Seidel matrix for the sequence {k!} and then divide column k by k!.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 16, 11, 4, 1, 65, 49, 19, 5, 1, 326, 261, 106, 29, 6, 1, 1957, 1631, 685, 193, 41, 7, 1, 13700, 11743, 5056, 1457, 316, 55, 8, 1, 109601, 95901, 42079, 12341, 2721, 481, 71, 9, 1, 986410, 876809, 390454, 116125, 25946, 4645, 694, 89, 10, 1
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

The Euler-Seidel matrix for the sequence {k!} is array A076571 read as a square, whose k-th column entries have a common factor of k!. Removing these common factors gives the current table.
This table is closely connected to the constant 1/e. The row, column and diagonal entries of this table occur in series acceleration formulas for 1/e.
For a similar table based on the differences of the sequence {k!} and related to the constant e, see A086764. For other arrays similarly related to constants see A143410 (for sqrt(e)), A143411 (for 1/sqrt(e)), A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)).

Examples

			The Euler-Seidel matrix for the sequence {k!} begins
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....2.....6....24...120...720
1..|.....2.....3.....8....30...144...840
2..|.....5....11....38...174...984
3..|....16....49...212..1158
4..|....65...261..1370
5..|...326..1631
6..|..1957
...
Dividing the k-th column by k! gives
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....1.....1.....1.....1.....1
1..|.....2.....3.....4.....5.....6.....7
2..|.....5....11....19....29....41
3..|....16....49...106...193
4..|....65...261...685
5..|...326..1631
6..|..1957
...
Examples of series formula for 1/e:
Row 2: 1/e = 2*(1/5 - 1/(1!*5*11) + 1/(2!*11*19) - 1/(3!*19*29) + ...).
Column 4: 24/e = 9 - (0!/(1*6) + 1!/(6*41) + 2!/(41*316) + ...).
...
Displayed as a triangle:
0 |     1
1 |     2,     1
2 |     5,     3,    1
3 |    16,    11,    4,    1
4 |    65,    49,   19,    5,   1
5 |   326,   261,  106,   29,   6,  1
6 |  1957,  1631,  685,  193,  41,  7, 1
7 | 13700, 11743, 5056, 1457, 316, 55, 8, 1
		

Crossrefs

Cf. A008288, A076571, A086764, A108625, A143007, A143410, A143411, A143413, A001517 (main diagonal), A028387 (row 2), A000522 (column 0), A001339 (column 1), A082030 (column 2), A095000 (column 3), A095177 (column 4).

Programs

  • Maple
    T := (n, k) -> 1/k!*add(binomial(n,j)*(k+j)!, j = 0..n):
    for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
    # Alternate:
    T:= proc(n,k) option remember;
      if n = 0 then return 1 fi;
      (n+k)*procname(n-1,k) + procname(n-1,k-1);
    end proc:
    seq(seq(T(s-n,n),n=0..s),s=0..10); # Robert Israel, Jul 07 2017
    # Or:
    A143409 := (n,k) -> hypergeom([k+1, k-n], [], -1):
    seq(seq(simplify(A143409(n,k)),k=0..n),n=0..9); # Peter Luschny, Oct 05 2017
  • Mathematica
    T[n_, k_] := HypergeometricPFQ[{k+1,k-n}, {}, -1];
    Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)

Formula

T(n,k) = (1/k!)*Sum_{j = 0..n} binomial(n,j)*(k+j)!.
T(n,k) = ((n+k)!/k!)*Num_Pade(n,k), where Num_Pade(n,k) denotes the numerator of the Padé approximation for the function exp(x) of degree (n,k) evaluated at x = 1.
Recurrence relations:
T(n,k) = T(n-1,k) + (k+1)*T(n-1,k+1);
T(n,k) = (n+k)*T(n-1,k) + T(n-1,k-1).
E.g.f. for column k: exp(y)/(1-y)^(k+1).
E.g.f. for array: exp(y)/(1-x-y) = (1 + x + x^2 + ...) + (2 + 3*x + 4*x^2 + ...)*y + (5 + 11*x + 19*x^2 + ...)*y^2/2! + ... .
Row n lists the values of the Poisson-Charlier polynomial x^(n) + C(n,1)*x^(n-1) + C(n,2)*x^(n-2) + ... + C(n,n) for x = 1,2,3,..., where x^(m) denotes the rising factorial x*(x+1)*...*(x+m-1).
Main diagonal is A001517.
Series formulas for 1/e:
Row n: 1/e = n!*[1/T(n,0) - 1/(1!*T(n,0)*T(n,1)) + 1/(2!*T(n,1)*T(n,2)) - 1/(3!*T(n,2)*T(n,3)) + ...].
Column k: k!/e = A000166(k) + (-1)^(k+1)*[0!/(T(0,k)*T(1,k)) + 1!/(T(1,k)*T(2,k)) + 2!/(T(2,k)*T(3,k)) + ...].
Main diagonal: 1/e = 1 - 2*Sum_{n>=0} (-1)^n/(T(n,n)*T(n+1,n+1)) = 1 - 2*[1/(1*3) - 1/(3*19) + 1/(19*193) - ...].
Second subdiagonal: 1/e = 2*(1^2/(1*5) - 2^2/(5*49) + 3^2/(49*685) - ...).
Compare with A143413.
From Peter Luschny, Oct 05 2017: (Start)
T(n, k) = hypergeom([k+1, k-n], [], -1).
When seen as a triangular array then the row sums are A273596 and the alternating row sums are A003470. (End)

A060475 Triangular array formed from successive differences of factorial numbers, then with factorials removed.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 11, 9, 1, 4, 13, 32, 53, 44, 1, 5, 21, 71, 181, 309, 265, 1, 6, 31, 134, 465, 1214, 2119, 1854, 1, 7, 43, 227, 1001, 3539, 9403, 16687, 14833, 1, 8, 57, 356, 1909, 8544, 30637, 82508, 148329, 133496, 1, 9, 73, 527, 3333, 18089, 81901, 296967, 808393, 1468457, 1334961
Offset: 0

Views

Author

Henry Bottomley, Mar 16 2001

Keywords

Comments

T(n,k) is also the number of partial bijections (of an n-element set) with a fixed domain of size k and without fixed points. Equivalently, T(n,k) is the number of partial derangements with a fixed domain of size k in the symmetric inverse semigroup (monoid), I sub n. - Abdullahi Umar, Sep 14 2008

Examples

			Triangle begins
  1,
  1,  0,
  1,  1,  1,
  1,  2,  3,  2,
  1,  3,  7, 11,  9,
  1,  4, 13, 32, 53, 44,
  ...
		

Crossrefs

Columns include A000012, A001477, A002061.
Diagonals include A000166, A000255, A000153, A000261, A001909, A001910.
Main diagonal is abs of A002119.
Similar to A076731.
Row sums equal A003470. - Johannes W. Meijer, Jul 27 2011

Programs

  • Magma
    [[Factorial(k)*(&+[(-1)^j*Binomial(n-j, k-j)/Factorial(j): j in [0..k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 04 2019
    
  • Maple
    A060475 := proc(n,k): k! * add(binomial(n-j,k-j)*(-1)^j/j!, j=0..k) end:
    seq(seq(A060475(n,k), k=0..n), n=0..7); # Johannes W. Meijer, Jul 27 2011
    T := (n,k) -> KummerU(-k, -n, -1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..10); # Peter Luschny, Jul 07 2022
  • Mathematica
    t[n_, k_] := k!*Sum[Binomial[n - j, k - j]*(-1)^j/j!, {j, 0, k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Aug 08 2011 *)
  • PARI
    {T(n,k) = k!*sum(j=0,k, (-1)^j*binomial(n-j, k-j)/j!)};
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 04 2019
    
  • Sage
    [[factorial(k)*sum((-1)^j*binomial(n-j, k-j)/factorial(j) for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 04 2019

Formula

T(n,k) = A047920(n,k)/(n-k)! = (n-1)*T(n-1,k-1) + (k-1)*T(n-2,k-2) = (n-k+1)*T(n, k-1) - T(n-1,k-1).
From Abdullahi Umar, Sep 14 2008: (Start)
T(n,k) = k! * Sum_{j=0..k} C(n-j,k-j)*(-1)^j/j!.
C(n,k)*T(n,k) = A144089(n, k). (End)
T(n,k) = A076732(n+1,k+1)/(k+1). - Johannes W. Meijer, Jul 27 2011
E.g.f. as a square array: A(x,y) = exp(-x)/(1 - x - y) = (1 + y + y^2 + y^3 + ...) + (y + 2*y^2 + 3*y^3 + 4*y^4 + ...)*x + (1 + 3*y + 7*y^2 + 13*y^3 + ...)*x^2/2! + (2 + 11*y + 32*y^2 + 71*y^3 + ...)*x^3/3! + .... Observe that (1 - y)*A(x*(1 - y),y) = exp(x*(y - 1))/(1 - x) is the e.g.f. for A008290. - Peter Bala, Sep 25 2013
T(n, k) = KummerU(-k, -n, -1). - Peter Luschny, Jul 07 2022

A076732 Table T(n,k) giving number of ways of obtaining exactly one correct answer on an (n,k)-matching problem (1 <= k <= n).

Original entry on oeis.org

1, 1, 0, 1, 2, 3, 1, 4, 9, 8, 1, 6, 21, 44, 45, 1, 8, 39, 128, 265, 264, 1, 10, 63, 284, 905, 1854, 1855, 1, 12, 93, 536, 2325, 7284, 14833, 14832, 1, 14, 129, 908, 5005, 21234, 65821, 133496, 133497, 1, 16, 171, 1424, 9545, 51264, 214459, 660064, 1334961, 1334960
Offset: 1

Views

Author

Mohammad K. Azarian, Oct 28 2002

Keywords

Comments

Hanson et al. define the (n,k)-matching problem in the following realistic way. A matching question on an exam has k questions with n possible answers to choose from, each question having a unique answer. If a student guesses the answers at random, using each answer at most once, what is the probability of obtaining r of the k correct answers?
The T(n,k) represent the number of ways of obtaining exactly one correct answer, i.e., r=1, given k questions and n possible answers, 1 <= k <= n.

Examples

			Triangle begins
  1;
  1,0;
  1,2,3;
  1,4,9,8;
  ...
		

Crossrefs

Columns: A000012(n), 2*A001477(n-2), 3*A002061(n-2), 4*A094792(n-4), 5*A094793(n-5), 6*A094794(n-6), 7*A094795(n-7); A000240(n), A000166(n). - Johannes W. Meijer, Jul 27 2011

Programs

  • Maple
    A076732:=proc(n,k): (k/(n-k)!)*A047920(n,k) end: A047920:=proc(n,k): add(((-1)^j)*binomial(k-1,j)*(n-1-j)!, j=0..k-1) end: seq(seq(A076732(n,k), k=1..n), n=1..10); # Johannes W. Meijer, Jul 27 2011
  • Mathematica
    A000240[n_] := Subfactorial[n] - (-1)^n;
    T[n_, k_] := T[n, k] = Switch[k, 1, 1, n, A000240[n], _, k*T[n-1, k-1] + T[n-1, k]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 14 2023 *)

Formula

T(n,k) = F(n,k)*Sum{((-1)^j)*C(k-1, j)*(n-1-j)! (j=0 to k-1)}, where F(n,k) = k/(n-k)!, for 1 <= k <= n.
From Johannes W. Meijer, Jul 27 2011: (Start)
T(n,k) = k*T(n-1,k-1) + T(n-1,k) with T(n,1) = 1 and T(n,n) = A000240(n). [Hanson et al.]
T(n,k) = (n-1)*T(n-1,k-1) + (k-1)*T(n-2,k-2) + (1-k)*A076731(n-2,k-2) + A076731(n-1,k-1) with T(0,0) = T(n,0) = 0 and T(n,1) = 1. [Hanson et al.]
T(n,k) = k*A060475(n-1,k-1).
T(n,k) = (k/(n-k)!)*A047920(n-1,k-1).
Sum_{k=1..n} T(n,k) = A193463(n); row sums.
Sum_{k=1..n} T(n,k)/k = A003470(n-1). (End)

Extensions

Edited and information added by Johannes W. Meijer, Jul 27 2011

A358493 a(n) = Sum_{k=0..floor(n/3)} (n-2*k)!/k!.

Original entry on oeis.org

1, 1, 2, 7, 26, 126, 745, 5163, 41052, 367981, 3669484, 40282220, 482650681, 6267119885, 87659113950, 1313921407891, 21010208286486, 356998222642362, 6423340164746737, 122001442713615031, 2439314857827015896, 51212765334037840345, 1126436834463405257528
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Factorial(n-2*k)/Factorial(k): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, May 01 2024
    
  • Mathematica
    Table[Sum[(n-2*k)!/k!, {k,0,Floor[n/3]}], {n,0,30}] (* G. C. Greubel, May 01 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)!/k!);
    
  • SageMath
    [sum(factorial(n-2*k)/factorial(k) for k in range(1+n//3)) for n in range(31)] # G. C. Greubel, May 01 2024

Formula

a(n) = (n-1) * a(n-1) + (n-2) * a(n-2) + (n-4) * a(n-3) - 2 * a(n-4) - 2 * a(n-5) + 3 for n > 4.
a(n) ~ n! * (1 + 1/n^2 + 1/n^3 + 3/(2*n^4) + 4/n^5 + 41/(3*n^6) + 97/(2*n^7) + 1399/(8*n^8) + 3961/(6*n^9) + 322951/(120*n^10) + ...). - Vaclav Kotesovec, Nov 24 2022
G.f.: Sum_{k>=0} k! * x^k/(1-x^3)^(k+1). - Seiichi Manyama, Feb 26 2024

A292898 Array read by ascending antidiagonals, A(m, n) = Sum_{k=1..m}(-1)^(k-n-m)* hypergeom([k, k-n-m], [], 1) for m>=1 and n>=0.

Original entry on oeis.org

1, 1, 0, 3, 2, 1, 8, 7, 5, 2, 31, 30, 27, 20, 9, 147, 146, 142, 129, 97, 44, 853, 852, 847, 826, 755, 574, 265, 5824, 5823, 5817, 5786, 5652, 5187, 3973, 1854, 45741, 45740, 45733, 45690, 45463, 44462, 40923, 31520, 14833
Offset: 0

Views

Author

Peter Luschny, Oct 05 2017

Keywords

Examples

			Array starts:
[m\n]   0       1      2       3        4         5          6
-------------------------------------------------------------------
[1]     1,      0,     1,      2,       9,       44,       265, ...  [A000166]
[2]     1,      2,     5,     20,      97,      574,      3973, ...  [A259834(n+2)]
[3]     3,      7,    27,    129,     755,     5187,     40923, ...  [A292897]
[4]     8,     30,   142,    826,    5652,    44462,    394970, ...
[5]    31,    146,   847,   5786,   45463,   403514,   3990679, ...
[6]   147,    852,  5817,  45690,  405423,  4008768,  43692933, ...
[7]   853,   5823, 45733, 405779, 4012101, 43727687, 520723477, ...
  A003470,A193464,A293295.
Displayed as a triangle:
[1]     1;
[2]     1,      0;
[3]     3,      2,     1;
[4]     8,      7,     5,    2;
[5]    31,     30,    27,   20,    9;
[6]   147,    146,   142,  129,   97,   44;
[7]   853,    852,   847,  826,  755,  574,  265;
[8]  5824,   5823,  5817, 5786, 5652, 5187, 3973, 1854;
  A003470,A193464,A293295.
This triangle has row sums A193463.
		

Crossrefs

Programs

  • Maple
    A := (m, n) -> add((-1)^(k-n-m)*hypergeom([k, k-n-m], [], 1), k=1..m):
    seq(lprint(seq(simplify(A(m, n)), n=0..6)), m=1..7);
  • Mathematica
    A[m_, n_] :=  Sum[(-1)^(k-n-m) HypergeometricPFQ[{k, k-n-m},{}, 1], {k, 1, m} ];
    Table[Table[A[m, n], {n,0,6}], {m,1,7}]

A293295 a(n) = Sum_{k=1..n} (-1)^(n-k)*hypergeom([k, k-2-n], [], 1).

Original entry on oeis.org

1, 5, 27, 142, 847, 5817, 45733, 405836, 4012701, 43733965, 520794991, 6726601050, 93651619867, 1398047697137, 22275111534537, 377278848390232, 6768744159489913, 128228860181918421, 2557808459478878851, 53585748788874537830, 1176328664895760953831
Offset: 1

Views

Author

Peter Luschny, Oct 05 2017

Keywords

Crossrefs

Cf. A003470 (n=0), A193464 (n=1), this sequence (n=2), A292898 (n>=0).

Programs

  • Maple
    A293295 := n -> add((-1)^(n-k)*hypergeom([k, k-2-n], [], 1), k=1..n):
    seq(simplify(A293295(n)), n=1..20);
  • Mathematica
    Table[Sum[(-1)^(n-k)*HypergeometricPFQ[{k, k-2-n}, {}, 1], {k,1,n}], {n,1,20}] (* Vaclav Kotesovec, Jul 05 2018 *)

Formula

a(n) = A292898(n, 2).
From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: (n^2 - 4*n + 5)*a(n) = (n^3 - 3*n^2 + 3*n + 2)*a(n-1) - (n-1)*(2*n - 3)*a(n-2) - (n^3 - 3*n^2 + 2*n + 1)*a(n-3) + (n^2 - 2*n + 2)*a(n-4).
a(n) ~ n * n!.
a(n) ~ sqrt(2*Pi) * n^(n + 3/2) / exp(n). (End)

A357949 a(n) = Sum_{k=0..floor(n/4)} (n-3*k)!/k!.

Original entry on oeis.org

1, 1, 2, 6, 25, 122, 726, 5064, 40441, 363603, 3633852, 39957180, 479364841, 6230652124, 87218228180, 1308153551160, 20929018724041, 355774626352325, 6403681619657310, 121666026312835410, 2433257739200536081, 51097345199332200726, 1124122383340449444042
Offset: 0

Views

Author

Seiichi Manyama, Nov 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n-3k)!/k!,{k,0,Floor[n/4]}],{n,0,30}] (* Harvey P. Dale, Apr 23 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)!/k!);

Formula

a(n) = (n-1) * a(n-1) + (n-2) * a(n-2) + (n-3) * a(n-3) + (n-6) * a(n-4) - 3 * a(n-5) - 3 * a(n-6) - 3 * a(n-7) + 4 for n > 6.
a(n) ~ n! * (1 + 1/n^3 + 3/n^4 + 7/n^5 + 31/(2*n^6) + 77/(2*n^7) + 133/n^8 + 3913/(6*n^9) + 7473/(2*n^10) + ...). - Vaclav Kotesovec, Nov 25 2022
G.f.: Sum_{k>=0} k! * x^k/(1-x^4)^(k+1). - Seiichi Manyama, Feb 26 2024
Showing 1-10 of 12 results. Next